7 research outputs found

    Inflammation and immunity in ovarian cancer

    No full text
    The standard first-line therapy for ovarian cancer is a combination of surgery and carboplatin/paclitaxel-based chemotherapy. Patients with longer survival and improved response to chemotherapy usually present T-cell inflamed tumours. The presence of tumour-infiltrating T cells (TILs) notably varies among the different subtypes of ovarian tumours, being highest in high-grade serous ovarian carcinoma, intermediate in endometrioid tumours, and lowest in low-grade serous, mucinous and clear cell tumours. Interestingly, the presence of TILs is often accompanied by a strong immunosuppressive tumour environment. A better understanding of the immune response against ovarian cancer and the tumour immune evasion mechanisms will enable improved prognostication, response prediction and immunotherapy of this disease. This article provides an overview of some ovarian cancer cell features relevant for antitumour response, such as tumour-associated antigens, including neoantigens, expression of inhibitory molecules, and other mechanisms of immune evasion. Moreover, we describe relevant immune cell types found in epithelial ovarian tumours, including T and B lymphocytes, regulatory T cells, natural killer cells, tumour-associated macrophages, myeloid-derived suppressor cells and neutrophils. We focus on how these components influence the burden of the tumour and the clinical outcome

    Inflammation and immunity in ovarian cancer

    No full text
    The standard first-line therapy for ovarian cancer is a combination of surgery and carboplatin/paclitaxel-based chemotherapy. Patients with longer survival and improved response to chemotherapy usually present T-cell inflamed tumours. The presence of tumour-infiltrating T cells (TILs) notably varies among the different subtypes of ovarian tumours, being highest in high-grade serous ovarian carcinoma, intermediate in endometrioid tumours, and lowest in low-grade serous, mucinous and clear cell tumours. Interestingly, the presence of TILs is often accompanied by a strong immunosuppressive tumour environment. A better understanding of the immune response against ovarian cancer and the tumour immune evasion mechanisms will enable improved prognostication, response prediction and immunotherapy of this disease. This article provides an overview of some ovarian cancer cell features relevant for antitumour response, such as tumour-associated antigens, including neoantigens, expression of inhibitory molecules, and other mechanisms of immune evasion. Moreover, we describe relevant immune cell types found in epithelial ovarian tumours, including T and B lymphocytes, regulatory T cells, natural killer cells, tumour-associated macrophages, myeloid-derived suppressor cells and neutrophils. We focus on how these components influence the burden of the tumour and the clinical outcome

    Intratumoral neoadjuvant immunotherapy based on the BO-112 viral RNA mimetic

    No full text
    ABSTRACTBO-112 is a poly I:C-based viral mimetic that exerts anti-tumor efficacy when intratumorally delivered in mouse models. Intratumoral BO-112 synergizes in mice with systemic anti-PD-1 mAbs and this combination has attained efficacy in PD1-refractory melanoma patients. We sought to evaluate the anti-tumor efficacy of BO-112 pre-surgically applied in neoadjuvant settings to mouse models. We have observed that repeated intratumoral injections of BO-112 prior to surgical excision of the primary tumor significantly reduced tumor metastasis from orthotopically implanted 4T1-derived tumors and subcutaneous MC38-derived tumors in mice. Such effects were enhanced when combined with systemic anti-PD-1 mAb. The anti-tumor efficacy of this neoadjuvant immunotherapy approach depended on the presence of antigen-specific effector CD8 T cells and cDC1 antigen-presenting cells. Since BO-112 has been successful in phase-two clinical trials for metastatic melanoma, these results provide a strong rationale for translating this pre-surgical strategy into clinical settings, especially in combination with standard-of-care checkpoint inhibitors

    Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies

    No full text
    Background On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic.Methods We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression.Results CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137.Conclusion sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents

    CD137 (4-1BB) costimulation of CD8+ T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation

    No full text
    CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans

    Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy

    No full text
    Background BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections. Methods Mice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-α/β receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions. Results BO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade. Conclusion Clinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions
    corecore