29 research outputs found

    Special Issue-articles on “Cellular Lipid Binding Proteins”

    Get PDF

    Early health technology assessment of future clinical decision rule aided triage of patients presenting with acute chest pain in primary care

    Get PDF
    The objective of the paper is to estimate the number of patients presenting with chest pain suspected of acute coronary syndrome (ACS) in primary care and to calculate possible cost effects of a future clinical decision rule (CDR) incorporating a point-of-care test (PoCT) as compared with current practice. The annual incidence of chest pain, referrals and ACS in primary care was estimated based on a literature review and on a Dutch and Belgian registration study. A health economic model was developed to calculate the potential impact of a future CDR on costs and effects (ie, correct referral decisions), in several scenarios with varying correct referral decisions. One-way, two-way, and probabilistic sensitivity analyses were performed to test robustness of the model outcome to changes in input parameters. Annually, over one million patient contacts in primary care in the Netherlands concern chest pain. Currently, referral of eventual ACS negative patients (false positives, FPs) is estimated to cost €1,448 per FP patient, with total annual cost exceeding 165 million Euros in the Netherlands. Based on ‘international data’, at least a 29% reduction in FPs is required for the addition of a PoCT as part of a CDR to become cost-saving, and an additional €16 per chest pain patient (ie, 16.4 million Euros annually in the Netherlands) is saved for every further 10% relative decrease in FPs. Sensitivity analyses revealed that the model outcome was robust to changes in model inputs, with costs outcomes mainly driven by costs of FPs and costs of PoCT. If PoCT-aided triage of patients with chest pain in primary care could improve exclusion of ACS, this CDR could lead to a considerable reduction in annual healthcare costs as compared with current practice

    The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice

    Get PDF
    AbstractUncoupling protein 3 (UCP3) is suggested to protect mitochondria against aging and lipid-induced damage, possibly via modulation of reactive oxygen species (ROS) production. Here we show that mice overexpressing UCP3 (UCP3Tg) have a blunted age-induced increase in ROS production, assessed by electron spin resonance spectroscopy, but only after addition of 4-hydroxynonenal (4-HNE). Mitochondrial function, assessed by respirometry, on glycolytic substrate was lower in UCP3Tg mice compared to wild types, whereas this tended to be higher on fatty acids. State 4o respiration was higher in UCP3Tg animals. To conclude, UCP3 overexpression leads to increased state 4o respiration and, in presence of 4-HNE, blunts the age-induced increase in ROS production

    Fatty acids prevent Hypoxia-Inducible Factor 1α signalling in type 2 diabetes

    Get PDF
    SUMMARYHypoxia-inducible factor (HIF)-1ais essential following a myocardial infarction (MI), and diabetic patients havepoorer prognosis post-MI. Could HIF-1aactivation be abnormal in the diabetic heart, and could metabolism becausing this? Diabetic hearts had decreased HIF-1aprotein following ischemia, and insulin-resistant cardio-myocytes had decreased HIF-1a-mediated signaling and adaptation to hypoxia. This was due to elevated fattyacid (FA) metabolism preventing HIF-1aprotein stabilization. FAs exerted their effect by decreasing succinateconcentrations, a HIF-1aactivator that inhibits the regulatory HIF hydroxylase enzymes. In vivo and in vitropharmacological HIF hydroxylase inhibition restored HIF-1aaccumulation and improved post-ischemic func-tional recovery in diabetes

    Rapidly rule out acute myocardial infarction by combining copeptin and heart-type fatty acid-binding protein with cardiac troponin

    Get PDF
    Background The rapid exclusion of acute myocardial infarction in patients with chest pain can reduce the length of hospital admission, prevent unnecessary diagnostic work-up and reduce the burden on our health-care systems. The combined use of biomarkers that are associated with different pathophysiological aspects of acute myocardial infarction could improve the early diagnostic assessment of patients presenting with chest pain. Methods We measured cardiac troponin I, copeptin and heart-type fatty acid-binding protein concentrations in 584 patients who presented to the emergency department with acute chest pain. The diagnostic performances for the diagnosis of acute myocardial infarction and NSTEMI were calculated for the individual markers and their combinations. Separate calculations were made for patients presenting to the emergency department <3 h, 3–6 h and 6–12 h after chest pain onset. Results For ruling out acute myocardial infarction, the net predictive values (95% CI) of cardiac troponin I, copeptin and heart-type fatty acid-binding protein were 90.4% (87.3–92.9), 84% (79.8–87.6) and 87% (83.5–90), respectively. Combining the three biomarkers resulted in a net predictive value of 95.8% (92.8–97.8). The improvement was most pronounced in the early presenters (<3 h) where the combined net predictive value was 92.9% (87.3–96.5) compared to 84.6% (79.4–88.9) for cardiac troponin I alone. The area under the receiver operating characteristic for the triple biomarker combination increased significantly (P < 0.05) compared to that of cardiac troponin I alone (0.880 [0.833–0.928] vs. 0.840 [0.781–0.898], respectively). Conclusions Combining copeptin, heart-type fatty acid-binding protein and cardiac troponin I measurements improves the diagnostic performance in patients presenting with chest pain. Importantly, in patients who present early (<3 h) after chest pain onset, the combination improves the diagnostic performance compared to the standard cardiac troponin I measurement alone
    corecore