143 research outputs found
The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms
© 2008 by The American Society for Cell Biology. Under the License and Publishing Agreement, authors grant to the general public, effective two months after publication of (i.e.,. the appearance of) the edited manuscript in an online issue of MBoC, the nonexclusive right to copy, distribute, or display the manuscript subject to the terms of the Creative Commons–Noncommercial–Share Alike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0).The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3β homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.Deutsche Forschungsgemeinschaf
The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi
BACKGROUND: A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include "squirt guns" that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores are discharged at such high speeds, most of the information on launch processes from previous studies has been inferred from mathematical models and is subject to a number of errors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have used ultra-high-speed video cameras running at maximum frame rates of 250,000 fps to analyze the entire launch process in four species of fungi that grow on the dung of herbivores. For the first time we have direct measurements of launch speeds and empirical estimates of acceleration in these fungi. Launch speeds ranged from 2 to 25 m s(-1) and corresponding accelerations of 20,000 to 180,000 g propelled spores over distances of up to 2.5 meters. In addition, quantitative spectroscopic methods were used to identify the organic and inorganic osmolytes responsible for generating the turgor pressures that drive spore discharge. CONCLUSIONS/SIGNIFICANCE: The new video data allowed us to test different models for the effect of viscous drag and identify errors in the previous approaches to modeling spore motion. The spectroscopic data show that high speed spore discharge mechanisms in fungi are powered by the same levels of turgor pressure that are characteristic of fungal hyphae and do not require any special mechanisms of osmolyte accumulation
Propulsion in cubomedusae : mechanisms and utility
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56393, doi:10.1371/journal.pone.0056393.Evolutionary constraints which limit the forces produced during bell contractions of medusae affect the overall medusan morphospace such that jet propulsion is limited to only small medusae. Cubomedusae, which often possess large prolate bells and are thought to swim via jet propulsion, appear to violate the theoretical constraints which determine the medusan morphospace. To examine propulsion by cubomedusae, we quantified size related changes in wake dynamics, bell shape, swimming and turning kinematics of two species of cubomedusae, Chironex fleckeri and Chiropsella bronzie. During growth, these cubomedusae transitioned from using jet propulsion at smaller sizes to a rowing-jetting hybrid mode of propulsion at larger sizes. Simple modifications in the flexibility and kinematics of their velarium appeared to be sufficient to alter their propulsive mode. Turning occurs during both bell contraction and expansion and is achieved by generating asymmetric vortex structures during both stages of the swimming cycle. Swimming characteristics were considered in conjunction with the unique foraging strategy used by cubomedusae.This work was supported by an ONR MURI award (N000140810654) and National Science Foundation grant OCE 0623508 to JHC, SPC, JOD. And the work was supported by the Roger Williams University Foundation to Promote Scholarship
Pennsylvania Folklife Vol. 18, No. 1
• Tanning in Chester County, Pennsylvania, 1711-1850 • Chester County Widow Wills (1714-1800), A Folklife Source • Folk Elements in Scotch-Irish Presbyterian Communities • The Thomas Massey House • Passengers on the Ketch Endeavour • The Medical Plants of Berks County, Pennsylvania • Notes and Documents: A Dunkard Love Feast ; Jacob Graeff\u27s Reminiscences of Reading • Symposium on the Pennsylvania Dutch Dialect • Farm Dress: Folk-Cultural Questionnaire No. 9https://digitalcommons.ursinus.edu/pafolklifemag/1033/thumbnail.jp
Pennsylvania Folklife Vol. 18, No. 1
• Tanning in Chester County, Pennsylvania, 1711-1850 • Chester County Widow Wills (1714-1800), A Folklife Source • Folk Elements in Scotch-Irish Presbyterian Communities • The Thomas Massey House • Passengers on the Ketch Endeavour • The Medical Plants of Berks County, Pennsylvania • Notes and Documents: A Dunkard Love Feast ; Jacob Graeff\u27s Reminiscences of Reading • Symposium on the Pennsylvania Dutch Dialect • Farm Dress: Folk-Cultural Questionnaire No. 9https://digitalcommons.ursinus.edu/pafolklifemag/1033/thumbnail.jp
Regulation of Septin Dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4
In the budding yeast Saccharomyces cerevisiae, the lysine acetyltransferase NuA4 has been linked to a host of cellular processes through the acetylation of histone and non-histone targets. To discover proteins regulated by NuA4-dependent acetylation, we performed genome-wide synthetic dosage lethal screens to identify genes whose overexpression is toxic to non-essential NuA4 deletion mutants. The resulting genetic network identified a novel link between NuA4 and septin proteins, a group of highly conserved GTP-binding proteins that function in cytokinesis. We show that acetyltransferase-deficient NuA4 mutants have defects in septin collar formation resulting in the development of elongated buds through the Swe1-dependent morphogenesis checkpoint. We have discovered multiple sites of acetylation on four of the five yeast mitotic septins, Cdc3, Cdc10, Cdc12 and Shs1, and determined that NuA4 can acetylate three of the four in vitro. In vivo we find that acetylation levels of both Shs1 and Cdc10 are reduced in a catalytically inactive esa1 mutant. Finally, we determine that cells expressing a Shs1 protein with decreased acetylation in vivo have defects in septin localization that are similar to those observed in NuA4 mutants. These findings provide the first evidence that yeast septin proteins are acetylated and that NuA4 impacts septin dynamics
Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast
The asymmetric localization of cell fate determinants results in asymmetric cell cycle control in budding yeast
Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata
Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival
- …