49 research outputs found
Low energy atmospheric muon neutrinos in MACRO
We present the measurement of two event samples induced by atmospheric
of average energy . In the first sample,
the neutrino interacts inside the MACRO detector producing an upward-going muon
leaving the apparatus. The ratio of the number of observed to expected events
is with an angular
distribution similar to that expected from the Bartol atmospheric neutrino
flux. The second is a mixed sample of internally produced downward-going muons
and externally produced upward-going muons stopping inside the detector. These
two subsamples are selected by topological criteria; the lack of timing
information makes it impossible to distinguish stopping from downgoing muons.
The ratio of the number of observed to expected events is . Using the ratio of the two subsamples (for
which most theoretical uncertainties cancel) we can test the pathlength
dependence of the oscillation hypothesis. The probability of agreement with the
no-oscillation hypothesis is 5% .
The deviations of our observations from the expectations has a preferred
interpretation in terms of oscillations with maximal mixing and
. These parameters are in agreement
with our results from upward throughgoing muons, induced by of much
higher energies.Comment: 7 pages, 6 figures. Submitted to Phys. Lett.
Search for Dark Matter WIMPs using Upward Through-going Muons in Super-Kamiokande
We present the results of indirect searches for Weakly Interacting Massive
Particles (WIMPs) with 1679.6 live days of data from the Super-Kamiokande
detector using neutrino-induced upward through-going muons. The search is
performed by looking for an excess of high energy muon neutrinos from WIMP
annihilations in the Sun, the core of the Earth, and the Galactic Center, as
compared to the number expected from the atmospheric neutrino background. No
statistically significant excess was seen. We calculate flux limits in various
angular cones around each of the above celestial objects. We obtain
conservative model-independent upper limits on WIMP-nucleon cross-section as a
function of WIMP mass and compare these results with the corresponding results
from direct dark matter detection experiments.Comment: 10 pages, 14 figures, Submitted to Phys. Rev.
Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD
With the H1 detector at the ep collider HERA, D* meson production cross
sections have been measured in deep inelastic scattering with four-momentum
transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88
GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe
the differential cross sections within theoretical and experimental
uncertainties. Using these calculations, the NLO gluon momentum distribution in
the proton, x_g g(x_g), has been extracted in the momentum fraction range
7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon
momentum fraction x_g has been obtained from the measured kinematics of the
scattered electron and the D* meson in the final state. The results compare
well with the gluon distribution obtained from the analysis of scaling
violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
Introduction: building the history of language learning and teaching (HoLLT)
The papers presented in this issue are the result of a workshop held at the University of Nottingham in December 2012 as part of an Arts and Humanities Research Council research network Towards a History of Modern Foreign Language Teaching and Learning (2012–14) intended to stimulate historical research into language teaching and learning. This, the first workshop in the programme, focused on exchanging information on the history of language learning and teaching (HoLLT) across the different language traditions, for it had become clear to us that scholars working within their own language disciplines were often relatively unaware of work outside these. We hope that this special issue — with overview articles on the history of English, French, German, and Spanish as second/foreign languages — will help overcome that lack of awareness and facilitate further research collaboration. Charting the history of language teaching and learning will, in turn, make us all better informed in facing challenges and changes to policy and practice now and in the future. It is instructive in the current climate, for example, to realize that grave doubts were held about whether second foreign languages could survive alongside French in British schools in the early twentieth century (McLelland, forthcoming), or to look back at earlier attempts to establish foreign languages in primary schools (Bayley, 1989; Burstall et al., 1974; Hoy, 1977). As we write, language learning in England is undergoing yet more radical change. Language teaching for all children from the age of seven is being made compulsory in primary schools from 2014, while at Key Stage 3 (up to age 16), where a foreign language has not been compulsory since 2002, the most recent programme of study for England has virtually abandoned the recent focus on intercultural competence and now requires learners to ‘read great literature in the original language’,1 a radical change in emphasis compared to the previous half-century, which seems to reflect a very different view of what language learning is for. We seem to be little closer in 2014 than we were at the dawn of the twentieth century to answering with any certainty the questions that lie at the very foundations of language teaching: who should learn a foreign language, why learners learn, what they need to learn, and what we want to teach them — answers that we need before we can consider how we want to teach. The research programme begun under our research network is intended to help us to take ‘the long view’ on such questions
Biological flora of Central europe: Baldellia ranunculoides (Alismataceae)
Baldellia ranunculoides (L.) Parl. (Alismataceae) is a taxonomically problematic aquatic plant with an historically ill-defined distribution and global conservation status. This paper finds morphological, ecological and molecular evidence for two distinct taxa, probably best described as subspecies: (1) B. ranunculoides subsp. ranunculoides and (2) B. ranunculoides subsp. repens and provides detailed distribution data on their overlapping range, in different habitats, across the cool, high rainfall areas of western Europe and west Mediterranean. The two subspecies are amongst the relatively large number of threatened European and north Africa aquatic plants and this paper provides a systematic review of their relative conservation pressures and management needs, with particular emphasis on the status of both taxa in central Europe. Other observations indicate probable evolutionary relationships within B. ranunculoides s.l. and its associated taxa and the review points out where these and other research topics could potentially be pursued
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German
Federal Ministry of Education and Research (01KI20197), Andre Franke, David
Ellinghaus and Frauke Degenhardt were supported by the Deutsche
Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic
Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal
Ministry of Education and Research (BMBF) within the framework of the
Computational Life Sciences funding concept (CompLS grant 031L0165). David
Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk
Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana
Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German
Research Foundation (DFG) through the Research Training Group 1743, "Genes,
Environment and Inflammation". This project was supported by a Covid-19 grant from
the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197).
Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione
primaria cardiovascolare primaria nella popolazione italiana; The European Union
(EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project
LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca
corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione
IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi
was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research
(Covid-Bank). This research was partly funded by a MIUR grant to the Department of
Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This
study makes use of data generated by the GCAT-Genomes for Life. Cohort study of
the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program /
Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026);
the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529).
Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en
Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional
(FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national
grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”).
Additional data included in this study was obtained in part by the COVICAT Study
Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19
Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià
and Sara Marsal were supported by the Spanish Ministry of Economy and
Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36).
Antonio Julià was also supported the by national grant PI17/00019 from the Acción
Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque
Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received
Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal
de Investigación (AEI, Spain) and the European Regional Development Fund
(FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán
and Douglas Maya Miles are supported by the “Spanish Ministry of Economy,
Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404,
PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian
government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed,
COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant
FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud.
Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health
(CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from
Research Council of Norway grant no 312780 during the conduct of the study. Dr.
Solligård: reports grants from Research Council of Norway grant no 312769. The
BioMaterialBank Nord is supported by the German Center for Lung Research (DZL),
Airway Research Center North (ARCN). The BioMaterialBank Nord is member of
popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants
from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne
Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases,
University of Cologne, Cologne, Germany. He is supported by the German Federal
Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the
German Federal Ministry of Research and Education and is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded
by Technical University of Munich, Munich, Germany. Genotyping was performed by
the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM
Technology Centre, University of Helsinki. This work was supported by grants of the
Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland
and Lower Saxony. Kerstin U. Ludwig is supported by the German Research
Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the
Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported
by the Bavarian State Ministry for Science and Arts. Part of the genotyping was
supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA
BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative
Disease Research (JPND). Additional funding was derived from the German Research
Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is
supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH
state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist
Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision
Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf
are supported by the German Center for Infection Research (DZIF). Thorsen Brenner,
Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung
Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la
Cierva Incorporacion program, grant IJC2018-035131-I funded by
MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche
Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N