23,972 research outputs found

    On Repetitive Scenario Design

    Get PDF
    Repetitive Scenario Design (RSD) is a randomized approach to robust design based on iterating two phases: a standard scenario design phase that uses NN scenarios (design samples), followed by randomized feasibility phase that uses NoN_o test samples on the scenario solution. We give a full and exact probabilistic characterization of the number of iterations required by the RSD approach for returning a solution, as a function of NN, NoN_o, and of the desired levels of probabilistic robustness in the solution. This novel approach broadens the applicability of the scenario technology, since the user is now presented with a clear tradeoff between the number NN of design samples and the ensuing expected number of repetitions required by the RSD algorithm. The plain (one-shot) scenario design becomes just one of the possibilities, sitting at one extreme of the tradeoff curve, in which one insists in finding a solution in a single repetition: this comes at the cost of possibly high NN. Other possibilities along the tradeoff curve use lower NN values, but possibly require more than one repetition

    Resonant normal forms as constrained linear systems

    Full text link
    We show that a nonlinear dynamical system in Poincare'-Dulac normal form (in Rn\R^n) can be seen as a constrained linear system; the constraints are given by the resonance conditions satisfied by the spectrum of (the linear part of) the system and identify a naturally invariant manifold for the flow of the ``parent'' linear system. The parent system is finite dimensional if the spectrum satisfies only a finite number of resonance conditions, as implied e.g. by the Poincare' condition. In this case our result can be used to integrate resonant normal forms, and sheds light on the geometry behind the classical integration method of Horn, Lyapounov and Dulac.Comment: 15 pages; revised version (with revised title

    Robust Model Predictive Control via Scenario Optimization

    Full text link
    This paper discusses a novel probabilistic approach for the design of robust model predictive control (MPC) laws for discrete-time linear systems affected by parametric uncertainty and additive disturbances. The proposed technique is based on the iterated solution, at each step, of a finite-horizon optimal control problem (FHOCP) that takes into account a suitable number of randomly extracted scenarios of uncertainty and disturbances, followed by a specific command selection rule implemented in a receding horizon fashion. The scenario FHOCP is always convex, also when the uncertain parameters and disturbance belong to non-convex sets, and irrespective of how the model uncertainty influences the system's matrices. Moreover, the computational complexity of the proposed approach does not depend on the uncertainty/disturbance dimensions, and scales quadratically with the control horizon. The main result in this paper is related to the analysis of the closed loop system under receding-horizon implementation of the scenario FHOCP, and essentially states that the devised control law guarantees constraint satisfaction at each step with some a-priori assigned probability p, while the system's state reaches the target set either asymptotically, or in finite time with probability at least p. The proposed method may be a valid alternative when other existing techniques, either deterministic or stochastic, are not directly usable due to excessive conservatism or to numerical intractability caused by lack of convexity of the robust or chance-constrained optimization problem.Comment: This manuscript is a preprint of a paper accepted for publication in the IEEE Transactions on Automatic Control, with DOI: 10.1109/TAC.2012.2203054, and is subject to IEEE copyright. The copy of record will be available at http://ieeexplore.ieee.or

    Phonon Bottleneck Identification in Disordered Nanoporous Materials

    Get PDF
    Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high- effciency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation, to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provides a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials

    Toward phonon-boundary engineering in nanoporous materials

    Get PDF
    Tuning thermal transport in nanostructured materials is a powerful approach to develop high-efficiency thermoelectric materials. Using a recently developed approach based on the phonon mean free path dependent Boltzmann transport equation, we compute the effective thermal conductivity of nanoporous materials with pores of various shapes and arrangements. We assess the importance of pore-pore distance in suppressing thermal transport, and identify the pore arrangement that minimizes the thermal conductivity, composed of a periodic arrangement of two misaligned rows of triangular pores. Such a configuration yields a reduction in the thermal conductivity of more than 60%60 \% with respect the simple circular aligned case with the same porosity.Comment: 4 pages, 4 figures, 1 tabl

    Optimization of force-limiting seismic devices connecting structural subsystems

    Get PDF
    This paper is focused on the optimum design of an original force-limiting floor anchorage system for the seismic protection of reinforced concrete (RC) dual wall-frame buildings. This protection strategy is based on the interposition of elasto-plastic links between two structural subsystems, namely the lateral force resisting system (LFRS) and the gravity load resisting system (GLRS). The most efficient configuration accounting for the optimal position and mechanical characteristics of the nonlinear devices is obtained numerically by means of a modified constrained differential evolution algorithm. A 12-storey prototype RC dual wall-frame building is considered to demonstrate the effectiveness of the seismic protection strategy
    • …
    corecore