3,035 research outputs found

    Image Content Enhancement Through Salient Regions Segmentation for People With Color Vision Deficiencies

    Get PDF
    Color vision deficiencies affect visual perception of colors and, more generally, color images. Several sciences such as genetics, biology, medicine, and computer vision are involved in studying and analyzing vision deficiencies. As we know from visual saliency findings, human visual system tends to fix some specific points and regions of the image in the first seconds of observation summing up the most important and meaningful parts of the scene. In this article, we provide some studies about human visual system behavior differences between normal and color vision-deficient visual systems. We eye-tracked the human fixations in first 3 seconds of observation of color images to build real fixation point maps. One of our contributions is to detect the main differences between the aforementioned human visual systems related to color vision deficiencies by analyzing real fixation maps among people with and without color vision deficiencies. Another contribution is to provide a method to enhance color regions of the image by using a detailed color mapping of the segmented salient regions of the given image. The segmentation is performed by using the difference between the original input image and the corresponding color blind altered image. A second eye-tracking of color blind people with the images enhanced by using recoloring of segmented salient regions reveals that the real fixation points are then more coherent (up to 10%) with the normal visual system. The eye-tracking data collected during our experiments are in a publicly available dataset called Eye-Tracking of Color Vision Deficiencies

    Image Content Enhancement Through Salient Regions Segmentation for People With Color Vision Deficiencies.

    Get PDF
    Color vision deficiencies affect visual perception of colors and, more generally, color images. Several sciences such as genetics, biology, medicine, and computer vision are involved in studying and analyzing vision deficiencies. As we know from visual saliency findings, human visual system tends to fix some specific points and regions of the image in the first seconds of observation summing up the most important and meaningful parts of the scene. In this article, we provide some studies about human visual system behavior differences between normal and color vision-deficient visual systems. We eye-tracked the human fixations in first 3 seconds of observation of color images to build real fixation point maps. One of our contributions is to detect the main differences between the aforementioned human visual systems related to color vision deficiencies by analyzing real fixation maps among people with and without color vision deficiencies. Another contribution is to provide a method to enhance color regions of the image by using a detailed color mapping of the segmented salient regions of the given image. The segmentation is performed by using the difference between the original input image and the corresponding color blind altered image. A second eye-tracking of color blind people with the images enhanced by using recoloring of segmented salient regions reveals that the real fixation points are then more coherent (up to 10%) with the normal visual system. The eye-tracking data collected during our experiments are in a publicly available dataset called Eye-Tracking of Color Vision Deficiencies

    Adjuvant Treatment in Pancreatic Cancer: Shaping the Future of the Curative Setting

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease even in the early stages, despite progresses in surgical and pharmacological treatment in recent years. High potential for metastases is the main cause of therapeutic failure in localized disease, highlighting the current limited knowledge of underlying pathological processes. However, nowadays research is focusing on the search for personalized approaches also in the adjuvant setting for PDAC, by implementing the use of biomarkers and investigating new therapeutic targets. In this context, the aim of this narrative review is to summarize the current treatment scenario and new potential therapeutic approaches in early stage PDAC, from both a preclinical and clinical point of view. Additionally, the review examines the role of target therapies in localized PDAC and the influence of neoadjuvant treatments on survival outcomes

    Ictal apnea: A prospective monocentric study in patients with epilepsy

    Get PDF
    Background and purpose: Ictal respiratory disturbances have increasingly been reported, in both generalized and focal seizures, especially involving the temporal lobe. Recognition of ictal breathing impairment has gained importance for the risk of sudden unexpected death in epilepsy (SUDEP). The aim of this study was to evaluate the incidence of ictal apnea (IA) and related hypoxemia during seizures. Methods: We collected and analyzed electroclinical data from consecutive patients undergoing long-term video-electroencephalographic (video-EEG) monitoring with cardiorespiratory polygraphy. Patients were recruited at the epilepsy monitoring unit of the Civil Hospital of Baggiovara, Modena Academic Hospital, from April 2020 to February 2022. Results: A total of 552 seizures were recorded in 63 patients. IA was observed in 57 of 552 (10.3%) seizures in 16 of 63 (25.4%) patients. Thirteen (81.2%) patients had focal seizures, and 11 of 16 patients showing IA had a diagnosis of temporal lobe epilepsy; two had a diagnosis of frontal lobe epilepsy and three of epileptic encephalopathy. Apnea agnosia was reported in all seizure types. Hypoxemia was observed in 25 of 57 (43.9%) seizures with IA, and the severity of hypoxemia was related to apnea duration. Apnea duration was significantly associated with epilepsy of unknown etiology (magnetic resonance imaging negative) and with older age at epilepsy onset (p < 0.001). Conclusions: Ictal respiratory changes are a frequent clinical phenomenon, more likely to occur in focal epilepsies, although detected even in patients with epileptic encephalopathy. Our findings emphasize the need for respiratory polygraphy during long-term video-EEG monitoring for diagnostic and prognostic purposes, as well as in relation to the potential link of ictal apnea with the SUDEP risk

    Dupilumab in chronic rhinosinusitis with nasal polyps: Real life data in a multicentric Sicilian experience

    Get PDF
    Objective: This study aimed to evaluate the effectiveness and safety of dupilumab during the first year of treatment in a real-life setting, focusing on improvement in nasal polyp score (NPS) as well as specific symptoms, quality of life and olfactory function. Methodology/principal: A multicentric observational cohort study was carried out. A total of 170 patients were enrolled in the Otorhinolaryngology Unit of the three University Hospitals and considered for dupilumab therapy. All recorder characteristics were age (at the first dupilumab application visit), sex, smoke habits, previous local and systemic corticosteroid therapy, history of endoscopic sinus surgery, number of previous endoscopic sinus surgery, concomitant asthma, history of an allergic condition, immunoglobulin E (IgE), allergy to nonsteroidal anti-inflammatory drugs (NSAIDs), Aspirin Exacerbated Respiratory Disease (AERD), other comorbidities associated, blood eosinophils, nasal polyp score, sinonasal outcome test 22 (SNOT 22), sniffin' stick test, the start date of dupilumab therapy and number of doses of dupilumab and eventually, Dupilumab's adverse events related to administration. The Wilcoxon test for dependent samples was performed to compare variables. Statistical significance was assumed for p values < 0.05. Results: A statistically significant reduction in SNOT-22 and NPS was shown at the 6th and 12th month compared to baseline values (p < 0.001 for both comparisons). A statistically significant increase value at the Sniffin' sticks test was shown in the 6th and 12th month compared to baseline values (p < 0.001 for both comparisons). At the 12-month follow-up, according to EUFOREA indications, all patients were considered to remain in treatment with dupilumab and continued the treatment because of a reduced NPS, improved quality of life and a reduced need for system corticosteroids. Dupilumab seemed to be well tolerated by all patients. Any adverse effect of the drug led to the quit of biological treatment. Conclusions: This multi-centric real-life study supported the effectiveness of dupilumab as an add-on therapy to intranasal corticosteroids in patients with severe uncontrolled CRSwNP in improvement of quality of life, severity of symptoms, polyp size reduction and smell function. Furthermore, our data support the safety profile of monoclonal therapy with dupilumab

    The supergiant fast X-ray transient IGR J18483−0311 in quiescence: XMM-Newton, Swift and Chandra observations

    Get PDF
    IGR J18483−0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here, we present the results of XMM-Newton, Swift and Chandra observations of IGR J18483−0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483−0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGR J18483−0311, the measured spin-period derivative of −(1.3 ± 0.3) × 10−9 s s−1 likely results from light travel time effects in the binary. We compare the most recent observational results of IGR J18483−0311 and SAX J1818.6−1703, the two supergiant fast X-ray transients for which a similar orbital period has been measure

    A preliminary study for quantitative assessment with HFUS (High-frequency ultrasound) of nodular skin melanoma breslow thickness in adults before surgery: Interdisciplinary team experience

    Get PDF
    Background: Cutaneous melanoma is one of the most severe skin diseases. Nodular melanoma is the second melanoma subtype in order of frequency. The prognosis of skin melanoma depends on the vertical growth of the tumor (Breslow index). For this measurement, excisional biopsy is strongly recommended. This is, however, an invasive procedure and may cause damage to the lymphatic drainage system. The HFUS system,, can be extremely useful for determining tumor thickness in the preoperative phase, given its high resolution capacity. The aim of this preliminary study is to define the role of HFUS for the nodular skin melanoma Breslow thickness in adults before surgery by making a comparison with histological features. Methods: In this study, 14 melanocytic lesions (8 male and 6 female) were evaluated with derma-toscopic clinical features strongly indicative of nodular melanoma. Out of these, excisional biopsy of 7 lesions was requested. The ultrasounds were performed preoperatively. The images were acquired through the first ultrasound scanner with ultra-high frequency probes (range from 50MHz to 70 MHz) available on the market under the EEC mark (Vevo "MD, FUJIFILM Visual Sonics, Amsterdam, the Netherlands) equipped with a linear probe of 50-70 MHz. Results: From the ultrasonographic analysis of 14 nodular melanoma thickness was determined for the presence of two hyperechogenic laminae, separated by a hypo / anechoic space. The twelve lesions were in situ while the other two lesions showed ultrasonography for example; the satellite lesions (less than two centimeters from the primary lesion) and in transit (localizable to more than two centimeters from the primary lesion). Four of these lesions were ulcerated. A comparsion was made the 7 lesions on between the thickness calculated with this method, and that obtained on the bioptic piece. The presence of a positive concordance has been evident in all of the cases. Conclusion: If further studies are needed to support its widespread clinical use, its is believed that, in expert hands and with an interdisciplinary team, HFUS is already capable to reliably calculate a Breslow index in a large majority of patients with cutaneous melanoma

    A Pig Model of Hemivascular Liver Occlusion for The Study of Ischemia-Reperfusion Injury: Use of an Infrared System for Detecting Ischemic Areas

    Get PDF
    Aim: Different animals are used as experimental models for the hepatic Ischemia- Reperfusion (IR) injury investigations and for each one of these animal models, many different surgical approaches have been performed. The aim of our study was to establish a new surgical pig model in which a hemi-liver is used to study the pathophysiology of hepatic IR injury. Contro-lateral hemi- liver is used as an internal control in the same animal. Methods: Liver ischemia was performed in six pigs by clamping the hepatic artery and vein and the portal vein to isolate the left hepatic lobe. Four hours of warm ischemia were followed by 4-hourrs of reperfusion. Biochemical and hematological analyses were performed throughout the experiments. Needle biopsies were obtained prior to ischemia and then hourly during the reperfusion for evaluation of tissue damage. To assess local temperature gradients on the liver surface a focal plane array detector camera was used. Results: Four hours ischemia induced mild signs of hepatic damage on the left ischemic lobe while more dramatic changes were evidenced after 2-hours reperfusion. Absence of tissue damage was detected on the right lobe. The liver functional test reached their maximum value at 2-4 hours after reperfusion. Conclusion: Our model is easy to perform, feasible and reproducible. This surgical model minimizes biases dependent on the individual response of different animals under the same conditions. In this IR model the new technology of an infrared thermocamera was used to control temperature changes and provide clinically important real-time information during surgery

    The Palermo (Sicily) seismic cluster of September 2002, in the seismotectonic framework of the Tyrrhenian Sea-Sicily border area

    Get PDF
    The northern coast of Sicily and its offshore area represent a hinge zone between a sector of the Tyrrhenian Basin, characterized by the strongest crustal thinning, and the sector of the Sicilian belt which has emerged. This hinge zone is part of a wider W-E trending right-lateral shear zone, which has been affecting the Maghrebian Chain units since the Pliocene. Seismological and structural data have been used to evaluate the seismotectonic behavior of the area investigated here. Seismological analysis was performed on a data set of about 2100 seismic events which occurred between January 1988 and October 2002 in the Southern Tyrrhenian Sea. This paper focuses in particular on a set of data relating to the period from 6th September 2002, including both the main shock and about 540 aftershocks of the Palermo seismic sequence. The distribution of the hypocenters revealed the presence of two main seismogenic zones. The events of the easternmost zone may be related to the Ionian lithospheric slab diving beneath the Calabrian Arc. The seismicity associated with the westernmost zone is closely clustered around a sub-horizontal regression plane contained within the thinned Southern Tyrrhenian crust, hence suggesting that this seismogenic zone is strictly connected to the deformation field active within the hinge zone. On the basis of both structural and seismological data, the brittle deformation pattern is characterized by high-angle faults, mainly represented by transcurrent synthetic right-lateral and antithetic left-lateral systems, producing both restraining/uplifting and releasing/subsiding zones which accommodate strains developing in response to the current stress field (characterized by a maximum axis trending NW-SE) which has been active in the area since the Pliocene. The cluster of the seismic sequence which started with the 6th September 2002's main shock is located within the hinge zone. The distribution of the hypocenters relative to this sequence emphasizes the presence of a high-angle NE-SW-oriented deformation belt within which several shear surfaces are considered to be found sub-parallel to that established for the main shock. The kinematics of all these structures is consistent with a compressive right-lateral focal mechanism

    The role of the amygdala in ictal central apnea: insights from brain MRI morphometry

    Get PDF
    Objective: Ictal central apnea (ICA) is a frequent correlate of focal seizures, particularly in temporal lobe epilepsy (TLE), and regarded as a potential electroclinical biomarker of sudden unexpected death in epilepsy (SUDEP). Aims of this study are to investigate morphometric changes of subcortical structures in ICA patients and to find neuroimaging biomarkers of ICA in patients with focal epilepsy.Methods: We prospectively recruited focal epilepsy patients with recorded seizures during a video-EEG long-term monitoring with cardiorespiratory polygraphic recordings from April 2020 to September 2022. Participants were accordingly subdivided into two groups: patients with focal seizures with ICA (ICA) and without (noICA). A pool of 30 controls matched by age and sex was collected. All the participants underwent MRI scans with volumetric high-resolution T1-weighted images. Post-processing analyses included a whole-brain VBM analysis and segmentation algorithms performed with FreeSurfer.Results: Forty-six patients were recruited (aged 15-60 years): 16 ICA and 30 noICA. The whole-brain VBM analysis showed an increased gray matter volume of the amygdala ipsilateral to the epileptogenic zone (EZ) in the ICA group compared to the noICA patients. Amygdala sub-segmentation analysis revealed an increased volume of the whole amygdala, ipsilateral to the EZ compared to controls [F(1, 76) = 5.383, pFDR = 0.042] and to noICA patients ([F(1, 76) = 5.383, pFDR = 0.038], specifically of the basolateral complex (respectively F(1, 76) = 6.160, pFDR = 0.037; F(1, 76) = 5.121, pFDR = 0.034). Interpretation: Our findings, while confirming the key role of the amygdala in participating in ictal respiratory modifications, suggest that structural modifications of the amygdala and its subnuclei may be valuable morphological biomarkers of ICA
    • …
    corecore