14 research outputs found

    Long-Range Low-Power Soil Water Content Monitoring System for Precision Agriculture

    Get PDF
    World population growth and desertification are increasing the food demand. Food production must increase to ensure food security in the following years. Smart agriculture tries to improve food production thanks to the adoption of electronic sensors to monitor and control fruit and vegetable crops. Another critical point in agriculture is the use of potable water. Precision irrigation strategies can be implemented to reduce water waste and increase crop production. This paper proposes a long-range, low-power sensor node to monitor soil water content. It is possible to place multiple sensor nodes in the field and use the gathered data to determine the most suitable irrigation strategy. The node communicates thanks to the LoRa protocol and it can also be used in remote areas where it is impossible to have an internet connection

    Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments

    Get PDF
    The young water fraction represents the portion of water molecules in a stream that have entered the catchment relatively recently, typically within 2–3 months. It can be reliably estimated in spatially heterogeneous and nonstationary catchments from the amplitude ratio of seasonal isotope (δ18O or δ2H) cycles of stream water and precipitation, respectively. Past studies have found that young water fractions increase with discharge (Q), thus reflecting the higher direct runoff under wetter catchment conditions. The rate of increase in the young water fraction with increasing Q, defined as the discharge sensitivity of the young water fraction (Sd*), can be useful for describing and comparing catchments' hydrological behaviour. However, the existing method for estimating Sd*, which only uses biweekly isotope data, can return highly uncertain and unreliable Sd* when stream water isotope data are sparse and do not capture the entire flow regime. Indeed, the information provided by isotope data depends on when the respective sample was taken. Accordingly, the low sampling frequency results in information gaps that could potentially be filled by using additional tracers sampled at a higher temporal resolution. By utilizing high-temporal-resolution and cost-effective electrical conductivity (EC) measurements, along with information obtainable from seasonal isotope cycles in stream water and precipitation, we develop a new method that can estimate the young water fraction at the same resolution as EC and Q measurements. These high-resolution estimates allow for improvements in the estimates of the Sd*. Our so-called EXPECT (Electrical-Conductivity-based hydrograph separaTion employing an EXPonential mixing model) method is built upon the following three key assumptions: We construct a mixing relationship consisting of an exponential decay of stream water EC with increasing young water fraction. This has been obtained based on the relationship between flow-specific young water fractions and EC. We assume that the two-component EC-based hydrograph separation technique, using the above-mentioned exponential mixing model, can be used for a time-source partitioning of stream water into young (transit times &lt; 2–3 months) and old (transit times &gt; 2–3 months) water. We assume that the EC value of the young water endmember (ECyw) is lower than that of the old water endmember (ECow). Selecting reliable values from measurements of ECyw and ECow to perform this unconventional EC-based hydrograph separation is challenging, but the combination of information derived from the two tracers allows for the estimation of endmembers' values. The two endmembers have been calibrated by constraining the unweighted and flow-weighted average young water fractions obtained with the EC-based hydrograph separation to be equal to the corresponding quantities derived from the seasonal isotope cycles. We test the EXPECT method in three small experimental catchments in the Swiss Alptal Valley using two different temporal resolutions of Q and EC data: sampling resolution (i.e. we only consider Q and EC measurements during dates of isotope sampling) and daily resolution. The EXPECT method has provided reliable young water fraction estimates at both temporal resolutions, from which a more accurate discharge sensitivity of the young water fraction (SdEXP) could be determined compared with the existing approach. Also, the method provided new information on ECyw and ECow, yielding calibrated values that fall outside the range of measured EC values. This suggests that stream water is always a mixture of young and old water, even under very high or very low wetness conditions. The calibrated endmembers revealed a good agreement with both endmembers obtained from an independent method and EC measurements from groundwater wells. For proper use of the EXPECT method, we have highlighted the limitations of EC as a tracer, identified certain catchment characteristics that may constrain the reliability of the current method and provided recommendations about its adaptation for future applications in catchments other than those investigated in this study.</p

    Aquifer recharge in the Piedmont Alpine zone: Historical trends and future scenarios

    Get PDF
    The spatial and temporal variability of air temperature, precipitation, actual evapotranspiration (AET) and their related water balance components, as well as their responses to anthropogenic climate change, provide fundamental information for an effective management of water resources and for a proactive involvement of users and stakeholders, in order to develop and apply adaptation and mitigation strategies at the local level. In this study, using an interdisciplinary research approach tailored to water management needs, we evaluate the past, present and future quantity of water potentially available for drinking supply in the water catchments feeding the about 2.3 million inhabitants of the Turin metropolitan area (the former Province of Turin, north-western Italy), considering climatologies at the quarterly and yearly timescales. Observed daily maximum surface air temperature and precipitation data from 1959 to 2017 were analysed to assess historical trends, their significance and the possible cross-correlations between the water balance components. Regional climate model (RCM) simulations from a small ensemble were analysed to provide mid-century projections of the difference between precipitation and AET for the area of interest in the future CMIP5 scenarios RCP4.5 (stabilization) and RCP8.5 (business as usual). Temporal and spatial variations in recharge were approximated with variations of drainage. The impact of irrigation, and of snowpack variability, on the latter was also assessed. The other terms of water balance were disregarded because they are affected by higher uncertainty. The analysis over the historical period indicated that the driest area of the study region displayed significant negative annual (and spring) trends of both precipitation and drainage. Results from field experiments were used to model irrigation, and we found that relatively wetter watersheds in the northern and in the southern parts behave differently, with a significant increase of AET due to irrigation. The analysis of future projections suggested almost stationary conditions for annual data. Regarding quarterly data, a slight decrease in summer drainage was found in three out of five models in both emission scenarios. The RCM ensemble exhibits a large spread in the representation of the future drainage trends. The large interannual variability of precipitation was also quantified and identified as a relevant risk factor for water management, expected to play a major role also in future decades

    The banking and financial sector in the countries of South-Eastern Europe

    No full text
    Project presented at the Workshop on Territorial Economic Analysis held in Rome on 21 June 2001, organized by the Territorial Economic Analysis Co-ordination Division of the Bank of Italy's Economic Research DepartementConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore