25 research outputs found

    Evaluation of Hospital Wastewater Treatment Using Sewage Treatment Plant for Heavy Metals, Radionuclides, and Some Pharmaceuticals: A Case Study

    Get PDF
    This is the first study in Oman to evaluate the efficiency of a sewage treatment plant (STP) for hospital wastewater (HWW) treatment for heavy metals, radionuclides, and some selected pharmaceuticals. A sewage treatment plant (STP) at Sultan Qaboos University (SQU) receives HWW, from Sultan Qaboos University Hospital (SQUH), and municipal wastewater from non-medical facilities at SQU. Representative samples of HWW (before mixing with municipal wastewater at STP), STP-treated wastewater (TWW), and STP mixing sludge, were collected and analyzed. A method for analyzing pharmaceuticals including metformin, atenolol, chlorpheniramine, triprolidine, diphenhydramine, and citalopram was developed and validated using LC-MS-MS. HWW and TWW show low concentrations of heavy metals. Radionuclides found in HWW include Cs137, K40, Ra226, Th234, I131, Tl208, Zn65 Ac228, Sb125, Bi124 and Be7. Diphenhydramine (2.24 mg/L), chlorpheniramine (0.293 mg/L) and atenolol (0.0260 mg/L) were found in HWW. Heavy metals, radionuclides, and pharmaceuticals were found less in TWW than in HWW. STP sewage sludge showed higher levels of these pollutants than HWW or TWW. Concentrations of diphenhydramine, chlorpheniramine, and citalopram were 137, 0.950, and 169 mg/kg, respectively in dried sewage sludge. The study confirms the ineffectiveness of STP treatment to completely remediate HWW. HWW should be considered hazardous and requires physico-chemical treatment before mixing with municipal wastewater. Keywords: Hospital, pharmaceuticals, radionuclides, heavy metals, wastewater

    Structural, 57 Fe Mössbauer and XPS studies of mechanosynthesized nanocrystalline Nd0.33Eu0.67Fe1-xCrxO3 particles

    Get PDF
    We report on the structure and surface composition of Nd0.33Eu0.67Fe1-xCrxO3 (x = 0.0, 0.3, 0.5, 0.7, 0.9 and 1.0) nanoparticles (∼30 nm) mechanosynthesized at temperatures that are ∼ 470– 700 °C lower than those at which the pure and doped pristine materials conventionally form. XRD Rietveld and FT-IR analyses show that with increasing x the lattice parameters decrease and the bond lengths and angles vary in a way that reduces crystalline distortion. Whilst the majority of the Eu3+/Nd3+ and Fe3+/Cr3+ cations occupy the normal perovskite-related A- and B-sites, respectively, ∼ 5% of them exchange sites. 57Fe Mössbauer spectroscopy confirms the presence of these antisites and reveals a superparamagnetic behaviour at 298 K that enhances with increasing x. XPS measurement reveals a complex surface composition of the nanoparticles with traces of Eu2O3, Nd2O3, Cr2O3 and Fe2O3 as well as partial O2--deficiency

    The hyperfine properties of a hydrogenated Fe/V superlattice

    Full text link
    : We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({\rho}), the contact hyperfine field (Bhf) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method . It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.Comment: 6 pages, 2 figures, 3 tables, ICAME 2011 conference (Kobe, Japan

    ⁵⁷Fe Mössbauer study of Ti⁴⁺-substituted Li₀․₅ ₍₁₊x ₎Cr₀․₁Fe₂․₄₋₁․₅xO₄ spinels

    No full text
    856-85957Fe Mössbauer effect (ME) was studied at 295K and 77K on the polycrystalline samples of the spinel oxide system Li₀․₅ ₍₁₊x ₎Cr₀․₁Fe₂․₄₋₁․₅xO₄ (x = 0.0 to 0.5) synthesized by double sintering ceramic technique. The chemical stoichiometry of the final products was ascertained by EDAX. The X-ray diffractometry (XRD) showed that all the samples were single-phase cubic spinels. The cell edge parameter, a (Å) for each composition was found by XRD-pattern indexing and using the Nelson-Riley method. The distribution of cations in the spinel was determined through XRD intensity analysis using the computer programme. The saturation magnetization for each composition was recorded using hysteresis loop tracer at the applied field of 4kOe. The Mössbauer spectra exhibit two Zeeman sextets due to different fields at tetrahedral (A) and octahedral (B) Fe³⁺ ions. The ME parameters are deduced using the NORMOS software and the observed hyperfine interaction parameters are explained in the light of cation distribution determined through XRD, magnetization and Mössbauer spectroscopic studies

    Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency

    No full text
    In this report, the heating efficiencies of γ-Fe2O3 and hybrid γ-Fe2O3-TiO2 nanoparticles NPs under an alternating magnetic field (AMF) have been investigated to evaluate their feasible use in magnetic hyperthermia. The NPs were synthesized by a modified sol-gel method and characterized by different techniques. X-ray diffraction (XRD), Mössbauer spectroscopy and electron microscopy analyses confirmed the maghemite (γ-Fe2O3) phase, crystallinity, good uniformity and 10 nm core sizes of the as-synthesized composites. SQUID hysteresis loops showed a non-negligible coercive field and remanence suggesting the ferromagnetic behavior of the particles. Heating efficiency measurements showed that both samples display high heating potentials and reached magnetic hyperthermia (42 °C) in relatively short times with shorter time (~3 min) observed for γ-Fe2O3 compared to γ-Fe2O3-TiO2. The specific absorption rate (SAR) values calculated for γ-Fe2O3 (up to 90 W/g) are higher than that for γ-Fe2O3-TiO2 (~40 W/g), confirming better heating efficiency for γ-Fe2O3 NPs. The intrinsic loss power (ILP) values of 1.57 nHm2/kg and 0.64 nHm2/kg obtained for both nanocomposites are in the range reported for commercial ferrofluids (0.2–3.1 nHm2/kg). Finally, the heating mechanism responsible for NP heat dissipation is explained concluding that both Neel and Brownian relaxations are contributing to heat production. Overall, the obtained high heating efficiencies suggest that the fabricated nanocomposites hold a great potential to be utilized in a wide spectrum of applications, particularly in magnetic photothermal hyperthermia treatments

    Mössbauer Study of Weathered H-meteorite from the Desert of Oman

    Get PDF
    A number of meteorites from the desert of Oman, classified as H-chondrites, with known and unknown ages, were studied by using 57Fe Mössbauer spectroscopy to determine their Fe3+-bearing compositions. Mössbauer spectra measured at 78 K were composed of paramagnetic doublets superimposed on magnetic sextets. The doublets are assigned to the silicate minerals olivine and pyroxene and Fe3+ phases. The magnetic sextets in most samples showed the presence of at least three magnetic phases, namely troilite, magnetite and kamacite, which commonly exist in most ordinary chondrites. The relative amounts (area %) of Fe3+ in the known-age meteorites, determined from the Mössbauer spectra, were plotted against their terrestrial ages. The plot was used to estimate the terrestrial ages of meteorites with unknown terrestrial age
    corecore