9 research outputs found

    A New Approach to Convective Core Overshooting: Probabilistic Constraints from Color\u2013Magnitude Diagrams of LMC Clusters

    Get PDF
    We present a framework to simultaneously constrain the values and uncertainties of the strength of convective core overshooting, metallicity, extinction, distance, and age in stellar populations. We then apply the framework to archival Hubble Space Telescope observations of six stellar clusters in the Large Magellanic Cloud that have reported ages between ~1-2.5 Gyr. Assuming a canonical value of the strength of core convective overshooting, we recover the well-known age-metallicity correlation, and additional correlations between metallicity and extinction and metallicity and distance. If we allow the strength of core overshooting to vary, we find that for intermediate-aged stellar clusters, the measured values of distance and extinction are negligibly effected by uncertainties of core overshooting strength. However, cluster age and metallicity may have disconcertingly large systematic shifts when core overshooting strength is allowed to vary by more than +/- 0.05 Hp. Using the six stellar clusters, we combine their posterior distribution functions to obtain the most probable core overshooting value, 0.500 +0.016 -0.134 Hp, which is in line with canonical values. ArXIV

    Determining stellar parameters of asteroseismic targets: Going beyond the use of scaling relations

    Get PDF
    Asteroseismic parameters allow us to measure the basic stellar properties of field giants observed far across the Galaxy. Most of such determinations are, up to now, based on simple scaling relations involving the large-frequency separation, \u394\u3bd, and the frequency of maximum power, \u3bdmax. In this work, we implement \u394\u3bd and the period spacing, \u394P, computed along detailed grids of stellar evolutionary tracks, into stellar isochrones and hence in a Bayesian method of parameter estimation. Tests with synthetic data reveal that masses and ages can be determined with typical precision of 5 and 19 per cent, respectively, provided precise seismic parameters are available. Adding independent on the stellar luminosity, these values can decrease down to 3 and 10 per cent, respectively. The application of these methods to NGC 6819 giants produces a mean age in agreement with those derived from isochrone fitting, and no evidence of systematic differences between RGB and RC stars. The age dispersion of NGC 6819 stars, however, is larger than expected, with at least part of the spread ascribable to stars that underwent mass-transfer events

    Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Large Magellanic Cloud

    Get PDF
    Reliable models of the thermally pulsing asymptotic giant branch (TP-AGB) phase are of critical importance across astrophysics, including our interpretation of the spectral energy distribution of galaxies, cosmic dust production, and enrichment of the interstellar medium. With the aim of improving sets of stellar isochrones that include a detailed description of the TP-AGB phase, we extend our recent calibration of the AGB population in the Small Magellanic Cloud (SMC) to the more metal-rich Large Magellanic Cloud (LMC). We model the LMC stellar populations with the trilegal code, using the spatially resolved star formation history derived from the VISTA survey. We characterize the efficiency of the third dredge-up by matching the star counts and the Ks-band luminosity functions of the AGB stars identified in the LMC. In line with previous findings, we confirm that, compared to the SMC, the third dredge-up in AGB stars of the LMC is somewhat less efficient, as a consequence of the higher metallicity. The predicted range of initial mass of C-rich stars is between Mi 48 1.7 and 3 M 99 at Zi = 0.008. We show how the inclusion of new opacity data in the carbon star spectra will improve the performance of our models. We discuss the predicted lifetimes, integrated luminosities, and mass-loss rate distributions of the calibrated models. The results of our calibration are included in updated stellar isochrones publicly available

    The Minimum Mass of Rotating Main-sequence Stars and its Impact on the Nature of Extended Main-sequence Turnoffs in Intermediate-age Star Clusters in the Magellanic Clouds

    No full text
    Extended main sequence turn-offs (eMSTOs) are a common feature in color-magnitude diagrams (CMDs) of young and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs is still debated. The most popular scenarios are extended star formation and ranges of stellar rotation rates. Here we study implications of a kink feature in the main sequence (MS) of young star clusters in the Large Magellanic Cloud (LMC). This kink shows up very clearly in new emph{Hubble Space Telescope} observations of the 700-Myr-old cluster NGC 1831, and is located below the region in the CMD where multiple or wide MSes, which are known to occur in young clusters and thought to be due to varying rotation rates, merge together into a single MS. The kink occurs at an initial stellar mass of 1.45\ub10.02M 99; we posit that it represents a lower limit to the mass below which the effects of rotation on the energy output of stars are rendered negligible at the metallicity of these clusters. Evaluating the positions of stars with this initial mass in CMDs of massive LMC star clusters with ages of 3c1.7 Gyr that feature wide eMSTOs, we find that such stars are located in a region where the eMSTO is already significantly wider than the MS below it. This strongly suggests that stellar rotation emph{cannot} fully explain the wide extent of eMSTOs in massive intermediate-age clusters in the Magellanic Clouds. A distribution of stellar ages still seems necessary to explain the eMSTO phenomenon

    Modelling long-period variables - I. A new grid of O-rich and C-rich pulsation models

    No full text
    We present a new grid of non-adiabatic, linear pulsation models of long-period variables (LPVs), including periods and growth rates for radial modes from the fundamental to the fourth overtone. The models span a wide range in mass, luminosity, metallicity, C/O ratio, and helium abundance, effectively covering the whole thermally pulsing asymptotic giant branch (TP-AGB) evolution, and representing a significant update with respect to previous works. The main improvement is the inclusion of detailed atomic and molecular opacities, consistent with the models chemical mixture, that makes the present set of models the first to systematically account for variability in C-stars. We examine periods and growth rates in the models, and find that, while the fundamental mode is affected by the structure of the envelope, overtones are less sensitive to the interior and largely determined by the global properties. In the models, the frequency of the overtone with the largest degree of excitation is found to scale with the acoustic cut-off frequency at the stellar surface, a behaviour similar to that observed for the frequency of maximum oscillation power for solar-like oscillations in less evolved red giants. This allows us to provide a simple analytic prescription to predict the most-likely dominant mode as a function of stellar parameters. Best-fitting relations for periods are also provided. By applying results of pulsation models to evolutionary tracks, we present a general picture of the evolution of long-period variability during the TP-AGB, that we find consistent with observations. Models are made public through a dedicated web interface

    Estimating the dust production rate of carbon stars in the Small Magellanic Cloud

    No full text
    We employ newly computed grids of spectra reprocessed by dust for estimating the total dust production rate (DPR) of carbon stars in the Small Magellanic Cloud (SMC). For the first time, the grids of spectra are computed as a function of the main stellar parameters, i.e. massloss rate, luminosity, effective temperature, current stellar mass and element abundances at the photosphere, following a consistent, physically grounded scheme of dust growth coupled with stationary wind outflow. The model accounts for the dust growth of various dust species formed in the circumstellar envelopes of carbon stars, such as carbon dust, silicon carbide and metallic iron. In particular, we employ some selected combinations of optical constants and grain sizes for carbon dust that have been shown to reproduce simultaneously the most relevant colour-colour diagrams in the SMC. By employing our grids of models, we fit the spectral energy distributions of 483100 carbon stars in the SMC, consistently deriving some important dust and stellar properties, i.e. luminosities, mass-loss rates, gas-to-dust ratios, expansion velocities and dust chemistry.We discuss these properties and we compare some of them with observations in the Galaxy and LargeMagellanic Cloud.We compute the DPR of carbon stars in the SMC, finding that the estimates provided by our method can be significantly different, between a factor of 482-5, than the ones available in the literature. Our grids of models, including the spectra and other relevant dust and stellar quantities, are publicly available at http://starkey.astro.unipd.it/web/guest/dustymodels

    TP-AGB stars in population synthesis models

    No full text
    In spite of its relevance, the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase is one of the most uncertain phases of stellar evolution, and a major source of disagreement between the results of different population synthesis models of galaxies. I will briefly review the existing literature on the subject, and recall the basic prescriptions that have been used to fix the contribution of TP-AGB stars to the integrated light of stellar populations. The simplicity of these prescriptions greatly contrasts with the richness of details provided by present-day databases of AGB stars in the Magellanic Clouds, which are now being extended to other nearby galaxies. I will present the first results of an ongoing study aimed at simulating photometry, chemistry, pulsation, mass loss, dust properties of AGB star populations in resolved and un-resolved galaxies. We test our predictions against observations from various surveys of the Magellanic Clouds (DENIS, 2MASS, OGLE, MACHO, Spitzer, and AKARI). I will discuss the implications and outline the plan of future developments

    M31 Planetary nebulae as seen by the Panchromatic Hubble Andromeda Treasury

    Get PDF
    We present a preliminary analysis of known planetary nebulae (PNe) in M31 that were observed in the first year of the Panchromatic Hubble Andromeda Treasury HST Multi-cycle program. We use the properties of this sample to discuss PNe from this new multi-band survey

    TRILEGAL, a TRIdimensional modeL of thE GALaxy: Status and FutureRed Giants as Probes of the Structure and Evolution of the Milky Way

    No full text
    We briefly describe TRILEGAL, a TRIdimensional modeL of thE GALaxy, and its more recent developments. Particularly relevant is the recent inclusion of a kinematical module to the code, and the present efforts to provide a more solid calibration of Milky Way parameters based on 2MASS and SDSS data
    corecore