35 research outputs found

    Cation Concentration Variability of Four Distinct Mueller-Hinton Agar Brands Influences Polymyxin B Susceptibility Results

    Get PDF
    Polymyxins have been the only alternative therapeutic option for the treatment of serious infections caused by multidrug-resistant Acinetobacter baumannii or Pseudomonas aeruginosa isolates. for this reason, it is of crucial importance that susceptibility tests provide accurate results when testing these drug-pathogen combinations. in this study, the effect of cation concentration variability found on different commercial brands of Mueller-Hinton agar (MHA) for testing polymyxin B susceptibility was evaluated. the polymyxin B susceptibilities determined using Etest and disk diffusion were compared to those determined by the CLSI reference broth microdilution method. in general, the polymyxin B MIC values were higher when determined by Etest than when determined by broth microdilution against both A. baumannii and P. aeruginosa isolates. A high very major error rate (10%) was observed, as well as a trend toward lower MICs, compared to those determined by broth microdilution when the Merck MHA was tested by Etest. Poor essential agreement rates (10 to 70%) were observed for P. aeruginosa when all MHA brands were tested by Etest. Although an excellent categorical agreement rate (100%) was seen between the disk diffusion and broth microdilution methods for P. aeruginosa, larger zones of inhibition were shown obtained using the Merck MHA. the high cation concentration variability found for the MHA brands tested correlated to the low accuracy, and discrepancies in the polymyxin B MICs were determined by Etest method, particularly for P. aeruginosa isolates.National Council for Science and Technological DevelopmentFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Janssen-CilagNovartisPfizerSanofi-AventisThermo Fisher ScientificMinistry of Science and Technology (Brazil)Universidade Federal de São Paulo, Lab Especial Microbiol Clin LEMC ALERIA, São Paulo, BrazilUniversidade Federal de São Paulo, Lab Microbiol Ocular & Mol, São Paulo, BrazilUniversidade Federal de São Paulo, Lab Especial Microbiol Clin LEMC ALERIA, São Paulo, BrazilUniversidade Federal de São Paulo, Lab Microbiol Ocular & Mol, São Paulo, BrazilFAPESP: 2010/12891-9Ministry of Science and Technology (Brazil): 307816/2009-5Web of Scienc

    Clinical and microbiological characterization of KPC-producing Klebsiella pneumoniae infections in Brazil

    Get PDF
    In 2008 isolates of KPC-producing Klebsiella pneumoniae (KPC-KPN) were detected for the first time at Hospital Heliópolis, São Paulo, Brazil. The aim of this study was to characterize the clinical and microbiological outcomes of infections caused by KPC-KPN. A historical cohort of patients from whom KPC-KPN strains were isolated was performed. Isolates were identified as resistant to ertapenem by automated broth microdilution system and screened as carbapenemase producers by the modified Hodge test. The beta-lactamase resistance gene blaKPC was detected by PCR. The genetic relatedness of isolates was determined by PFGE. The study provides early clinical experience in treating KPC-KPN infections in a Brazilian tertiary center.Hospital HeliópolisHospital Heliópolis Department of Infectious DiseasesUNIFESP-EPMHospital Heliópolis Microbiology LaboratoryUNIFESP-EPM Infectious Diseases DivisionUNIFESP, EPM, Infectious Diseases DivisionSciEL

    Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil

    Get PDF
    Background: Multi-drug efflux pumps have been increasingly recognized as a major component of resistance in P. aeruginosa. We have investigated the expression level of efflux systems among clinical isolates of P. aeruginosa, regardless of their antimicrobial susceptibility profile.Results: Aztreonam exhibited the highest in vitro activity against the P. aeruginosa isolates studied (64.4% susceptibility), whereas susceptibility rates of imipenem and meropenem were both 47.5%. the MexXY-OprM and MexAB-OprM efflux systems were overexpressed in 50.8% and 27.1% of isolates studied, respectively. Overexpression of the MexEF-OprN and MexCD-OprJ systems was not observed. AmpC beta-lactamase was overexpressed in 11.9% of P. aeruginosa isolates. in addition, decreased oprD expression was also observed in 69.5% of the whole collection, and in 87.1% of the imipenem non-susceptible P. aeruginosa clinical isolates. the MBL-encoding genes bla(SPM-1) and bla(IMP-1) were detected in 23.7% and 1.7% P. aeruginosa isolates, respectively. the bla(GES-1) was detected in 5.1% of the isolates, while bla(GES-5) and bla(CTX-M-2) were observed in 1.7% of the isolates evaluated. in the present study, we have observed that efflux systems represent an adjuvant mechanism for antimicrobial resistance.Conclusions: Efflux systems in association of distinct mechanisms such as the porin down-regulation, AmpC overproduction and secondary beta-lactamases play also an important role in the multi-drug resistance phenotype among P. aeruginosa clinical isolates.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Div Infect Dis, BR-04039032 São Paulo, BrazilUniversidade Federal de São Paulo, Div Infect Dis, BR-04039032 São Paulo, BrazilFAPESP: FAPESP - 2006/01716-8CNPq: 307714/2006-3Web of Scienc

    Antimicrobial activity of ceftobiprole against Gram-negative and Gram-positive pathogens: results from INVITA-A-CEFTO Brazilian study

    Get PDF
    Ceftobiprole is a broad-spectrum cephalosporin with potent activity against staphylococci, including those resistant to oxacillin, as well as against most Gram-negative bacilli including Pseudomonas aeruginosa. In this study, the in vitro activity of ceftobiprole and comparator agents was tested against bacterial isolates recently collected from Brazilian private hospitals. A total of 336 unique bacterial isolates were collected from hospitalized patients between February 2008 and August 2009. Each hospital was asked to submit 100 single bacterial isolates responsible for causing blood, lower respiratory tract or skin and soft tissue infections. Bacterial identification was confirmed and antimicrobial susceptibility testing was performed using CLSI microdilution method at a central laboratory. The CLSI M100-S21 (2011) was used for interpretation of the antimicrobial susceptibility results. Among the 336 pathogens collected, 255 (75.9%) were Gram-negative bacilli and 81 (24.1%) were Gram-positive cocci. Although ceftobiprole MIC50 values for oxacillin resistant strains were two-fold higher than for methicillin susceptible S. aureus, ceftobiprole inhibited 100% of tested S. aureus at MICs 6 µg/mL for both species. Our results showed that ceftobiprole has potent activity against staphylococci and E. faecalis, which was superior to that of vancomycin. Our data also indicates that ceftobiprole demonstrated potency comparable to that of cefepime and ceftazidime against key Gram-negative species.Janssen-CilagUniversidade Federal de São Paulo (UNIFESP) Post-graduation Course in SciencesUNIFESPUNIFESP, Post-graduation Course in SciencesSciEL

    Low performance of Policimbac® broth microdilution in determining polymyxin B MIC for Klebsiella pneumoniae

    Get PDF
    Klebsiella pneumoniae is a global threat to healthcare, and despite the availability of new drugs, polymyxins are still an important therapeutic option for this and other resistant gram-negative pathogens. Broth microdilution is the only method that is recommended for polymyxins. In this study, we evaluated the accuracy of a commercial Policimbac® plate in determining the polymyxin B MIC for K. pneumoniae clinical isolates. The results were compared with those of the broth microdilution method according to ISO 16782. The Policimbac® plate had an excellent 98.04% categorical agreement, but unacceptable 31.37% essential agreement rates. Almost 2% of major errors as observed. Additionally, 52.94% of the strains overestimated the MIC at 1 µg/mL. Three isolates were excluded from the analysis due to the drying of the Policimbac® plate. To avoid dryness, we included wet gauze for the test, obtaining a 100% of categorical agreement rate; however, a low essential agreement was maintained (25.49%). In conclusion, the Policimbac® plate was unable to correctly determine the polymyxin B MIC for K. pneumoniae isolates. This low performance may interfere with the clinical use of the drug and, thus, with the result of the patient’s treatment

    Plasmid-mediated mcr-1 in carbapenem-susceptible Escherichia coli ST156 causing a blood infection: an unnoticeable spread of colistin resistance in Brazil?

    Get PDF
    OBJECTIVE: We describe an IncX4 pHC891/16mcr plasmid carrying mcr-1 in a colistin-resistant and carbapenem-susceptible E. coli isolate (HC891/16), ST156, which caused a blood infection in a Brazilian patient with gallbladder adenocarcinoma. METHODS: Strain HC891/16 was subjected to whole genome sequencing using the MiSeq Platform (Illumina, Inc., USA). Assembly was performed using Mira and ABACAS. RESULTS: The isolates showed resistance only to ciprofloxacin, ampicillin and cefoxitin, and whole-genome sequencing revealed the presence of aac(6’)Ib-cr and blaTEM1. CONCLUSION: Our findings warn of the possible silent dissemination of colistin resistance by carbapenem-susceptible mcr-1 producers, as colistin susceptibility is commonly tested only among carbapenem-resistant isolates

    The polymyxin B-induced transcriptomic response of a clinical, multidrug-resistant Klebsiella pneumoniae involves multiple regulatory elements and intracellular targets

    Get PDF
    Background: The emergence of multidrug-resistant Klebsiella pneumoniae is a major public health concern. Many K. pneumoniae infections can only be treated when resorting to last-line drugs such as polymyxin B (PB). However, resistance to this antibiotic is also observed, although insufficient information is described on its mode of action as well as the mechanisms used by resistant bacteria to evade its effects. We aimed to study PB resistance and the influence of abiotic stresses in a clinical K. pneumoniae strain using whole transcriptome profiling. Results: We sequenced 12 cDNA libraries of K. pneumoniae Kp13 bacteria, from two biological replicates of the original strain Kp13 (Kp13) and five derivative strains: induced high-level PB resistance in acidic pH (Kp13pH), magnesium deprivation (Kp13Mg), high concentrations of calcium (Kp13Ca) and iron (Kp13Fe), and a control condition with PB (Kp13PolB). Our results show the involvement of multiple regulatory loci that differentially respond to each condition as well as a shared gene expression response elicited by PB treatment, and indicate the participation of two-regulatory components such as ArcA-ArcB, which could be involved in re-routing the K. pneumoniae metabolism following PB treatment. Modules of co-expressed genes could be determined, which correlated to growth in acid stress and PB exposure. We hypothesize that polymyxin B induces metabolic shifts in K. pneumoniae that could relate to surviving against the action of this antibiotic. Conclusions: We obtained whole transcriptome data for K. pneumoniae under different environmental conditions and PB treatment. Our results supports the notion that the K. pneumoniae response to PB exposure goes beyond damaged membrane reconstruction and involves recruitment of multiple gene modules and intracellular targets.Fil: Pereira Ramos, Pablo Ivan. Fundación Oswaldo Cruz; BrasilFil: Flores Custodio, Gregori Marlon. No especifíca;Fil: Quispe Saji, Guadalupe del Rosario. No especifíca;Fil: Cardoso, Thiago. No especifíca;Fil: Luchetti da Silva, Gisele. No especifíca;Fil: Braun, Graziela. Universidade Federal de Sao Paulo; BrasilFil: Martins, Williams. Universidade Federal de Sao Paulo; BrasilFil: Girardello, Raquel. Universidade Federal de Sao Paulo; BrasilFil: Ribeiro de Vasconcellos, Ana Teresa. No especifíca;Fil: Fernandez, Elmer Andres. Universidad Católica de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Gales, Cristina. Universidade Federal de Sao Paulo; BrasilFil: Nicolas, Marisa. No especifíca

    The polymyxin B-induced transcriptomic response of a clinical, multidrug-resistant Klebsiella pneumoniae involves multiple regulatory elements and intracellular targets

    Get PDF
    Background: The emergence of multidrug-resistant Klebsiella pneumoniae is a major public health concern. Many K. pneumoniae infections can only be treated when resorting to last-line drugs such as polymyxin B (PB). However, resistance to this antibiotic is also observed, although insufficient information is described on its mode of action as well as the mechanisms used by resistant bacteria to evade its effects. We aimed to study PB resistance and the influence of abiotic stresses in a clinical K. pneumoniae strain using whole transcriptome profiling. Results: We sequenced 12 cDNA libraries of K. pneumoniae Kp13 bacteria, from two biological replicates of the original strain Kp13 (Kp13) and five derivative strains: induced high-level PB resistance in acidic pH (Kp13(pH)), magnesium deprivation (Kp13(Mg)), high concentrations of calcium (Kp13(Ca)) and iron (Kp13(Fe)), and a control condition with PB (Kp13(PolB)). Our results show the involvement of multiple regulatory loci that differentially respond to each condition as well as a shared gene expression response elicited by PB treatment, and indicate the participation of two-regulatory components such as ArcA-ArcB, which could be involved in re-routing the K. pneumoniae metabolism following PB treatment. Modules of co-expressed genes could be determined, which correlated to growth in acid stress and PB exposure. We hypothesize that polymyxin B induces metabolic shifts in K. pneumoniae that could relate to surviving against the action of this antibiotic. Conclusions: We obtained whole transcriptome data for K. pneumoniae under different environmental conditions and PB treatment. Our results supports the notion that the K. pneumoniae response to PB exposure goes beyond damaged membrane reconstruction and involves recruitment of multiple gene modules and intracellular targets.Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Lab Nacl Comp Cient, Petropolis, RJ, BrazilFiocruz MS, Ctr Pesquisas Goncalo Moniz, Salvador, BA, BrazilUniv Fed Sao Paulo, Escola Paulista Med, Dept Internal Med, Lab Alerta,Div Infect Dis, Sao Paulo, SP, BrazilUniv Catolica Cordoba, Fac Ingn, CONICET, Cordoba, ArgentinaUniv Fed Sao Paulo, Escola Paulista Med, Dept Internal Med, Lab Alerta,Div Infect Dis, Sao Paulo, SP, BrazilFAPERJ: E-26/110.315/2014FAPESP: 2010/12891-9CAPES: 23038.010041/2013-13Web of Scienc

    Recent advances in the therapeutic potential of cathelicidins

    Get PDF
    The alarming increase in antimicrobial resistance in the last decades has prompted the search for alternatives to control infectious diseases. Antimicrobial peptides (AMPs) represent a heterogeneous class of molecules with ample antibacterial, antiviral, and antifungal effects. They can be found in many organisms, including all classes of vertebrates, providing a valuable source of new antimicrobial agents. The unique properties of AMPs make it harder for microbes develop resistance, while their immunomodulatory properties and target diversity reinforce their translational use in multiple diseases, from autoimmune disorders to different types of cancer. The latest years have witnessed a vast number of studies evaluating the use of AMPs in therapy, with many progressing to clinical trials. The present review explores the recent developments in the medicinal properties of cathelicidins, a vast family of AMPs with potent antimicrobial and immunomodulatory effects. Cathelicidins from several organisms have been tested in disease models of viral and bacterial infections, inflammatory diseases, and tumors, with encouraging results. Combining nanomaterials with active, natural antimicrobial peptides, including LL-37 and synthetic analogs like ceragenins, leads to the creation of innovative nanoagents with significant clinical promise. However, there are still important limitations, such as the toxicity of many cathelicidins to healthy host cells and low stability in vivo. The recent advances in nanomaterials and synthetic biology may help overcome the current limitations, enabling the use of cathelicidins in future therapeutics. Furthermore, a better understanding of the mechanisms of cathelicidin action in vivo and their synergy with other host molecules will contribute to the development of safer, highly effective therapies

    Genomic Characterization of mcr-1.1-Producing Escherichia coli Recovered From Human Infections in São Paulo, Brazil

    Get PDF
    Polymyxins are one of most important antibiotics available for multidrug-resistant Gram-negative infections. Diverse chromosomal resistance mechanisms have been described, but the polymyxin resistance phenotype is not yet completely understood. The objective of this study was to characterize colistin resistant mcr-1-producing strains isolated from human infections over one year in a hospital setting (Hospital das Clínicas, São Paulo, Brazil). We isolated 490 colistin-resistant Gram-negative rods, of which eight were mcr-1.1-positive Escherichia coli, the only species with this result, indicating a low incidence of the mcr-1 production mechanism among colistin-resistant isolates. All mcr-1.1 positive isolates showed similarly low MICs for colistin and were susceptible to most antibiotics tested. The isolates showed diversity of MLST classification. The eight mcr-1.1-positive E. coli genomes were sequenced. In seven of eight isolates the mcr-1.1 gene is located in a contig that is presumed to be a part of an IncX4 plasmid; in one isolate, it is located in a contig that is presumed to be part of an IncHI2A plasmid. Three different genomic contexts for mcr-1.1 were observed, including a genomic cassette mcr-1.1-pap2 disrupting a DUF2806 domain-containing gene in six isolates. In addition, an IS1-family transposase was found inserted next to the mcr-1.1 cassette in one isolate. An mcr-1.1-pap2 genomic cassette not disrupting any gene was identified in another isolate. Our results suggest that plasmid dissemination of hospital-resident strains took place during the study period and highlight the need for continued genomic surveillance
    corecore