10,344 research outputs found
Recent Results from the SIMPLE Dark Matter Search
SIMPLE is an experimental search for evidence of spin-dependent dark matter,
based on superheated droplet detectors using CClF. We report
preliminary results of a 0.6 kgdy exposure of five one liter devices, each
containing 10 g active mass, in the 1500 mwe LSBB (Rustrel, France). In
combination with improvements in detector sensitivity, the results exclude a
WIMP--proton interaction above 5 pb at M = 50 GeV/c.Comment: 6 pages, 2 figures,contribution to IDM2004, Sept. 6-10, 2004,
Edinburgh, U
Mesothelioma and thymic tumors: Treatment challenges in (outside) a network setting
The management of patients with mesothelioma and thymic malignancy requires continuous multidisciplinary expertise at any step of the disease. A dramatic improvement in our knowledge has occurred in the last few years, through the development of databases, translational research programs, and clinical trials. Access to innovative strategies represents a major challenge, as there is a lack of funding for clinical research in rare cancers and their rarity precludes the design of robust clinical trials that could lead to specific approval of drugs. In this context, patient-centered initiatives, such as the establishment of dedicated networks, are warranted. International societies, such as IMIG (International Mesothelioma Interest Group) and ITMIG (International Thymic Malignancy Interest Group) provide infrastructure for global collaboration, and there are many advantages to having strong regional groups working on the same issues. There may be regional differences in risk factors, susceptibility, management and outcomes. The ability to address questions both regionally as well as globally is ideal to develop a full understanding of mesothelioma and thymic malignancies. In Europe, through the integration of national networks with EURACAN, the collaboration with academic societies and international groups, the development of networks in thoracic oncology provides multiplex integration of clinical care and research, ultimately ensuring equal access to high quality care to all patients, with the opportunity of conducting high level clinical and translational research projects
The Commission of Conservation as a Forerunner to the National Research Council 1909-1921
This paper links the history of the Canadian Commission of Conservation (1909-1921) to the creation of the National Research Council through the fight between the two organizations for federal funds in scientific research. In my view, the Commission of Conservation (or COC) was abolished in 1921 because it persisted in advocating conservation, an expression of early 20th century environmentalism, in a world which was no longer interested in this issue.Cet article fait état des liens entre l’histoire de la Commission de la conservation (1909-1921) et celle du Conseil national de recherches du Canada. Durant les années 1910, ces deux organisations ont lutté pour s’approprier des subventions fédérales dans le domaine de la recherche scientifique. L’auteur estime que la Commission de la conservation a été abolie en 1921 parce qu’elle persistait à promouvoir une vision du développement axée sur la conservation de l’environnement dans un monde qui ne s’intéressait plus à cette question
Subjective experience of episodic memory and metacognition: a neurodevelopmental approach.
Episodic retrieval is characterized by the subjective experience of remembering. This experience enables the co-ordination of memory retrieval processes and can be acted on metacognitively. In successful retrieval, the feeling of remembering may be accompanied by recall of important contextual information. On the other hand, when people fail (or struggle) to retrieve information, other feelings, thoughts, and information may come to mind. In this review, we examine the subjective and metacognitive basis of episodic memory function from a neurodevelopmental perspective, looking at recollection paradigms (such as source memory, and the report of recollective experience) and metacognitive paradigms such as the feeling of knowing). We start by considering healthy development, and provide a brief review of the development of episodic memory, with a particular focus on the ability of children to report first-person experiences of remembering. We then consider neurodevelopmental disorders (NDDs) such as amnesia acquired in infancy, autism, Williams syndrome, Down syndrome, or 22q11.2 deletion syndrome. This review shows that different episodic processes develop at different rates, and that across a broad set of different NDDs there are various types of episodic memory impairment, each with possibly a different character. This literature is in agreement with the idea that episodic memory is a multifaceted process
Lazy Abstraction-Based Controller Synthesis
We present lazy abstraction-based controller synthesis (ABCS) for
continuous-time nonlinear dynamical systems against reach-avoid and safety
specifications. State-of-the-art multi-layered ABCS pre-computes multiple
finite-state abstractions of varying granularity and applies reactive synthesis
to the coarsest abstraction whenever feasible, but adaptively considers finer
abstractions when necessary. Lazy ABCS improves this technique by constructing
abstractions on demand. Our insight is that the abstract transition relation
only needs to be locally computed for a small set of frontier states at the
precision currently required by the synthesis algorithm. We show that lazy ABCS
can significantly outperform previous multi-layered ABCS algorithms: on
standard benchmarks, lazy ABCS is more than 4 times faster
Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments
Spin-dependent WIMP searches have traditionally presented results within an
odd group approximation and by suppressing one of the spin-dependent
interaction cross sections. We here elaborate on a model-independent analysis
in which spin-dependent interactions with both protons and neutrons are
simultaneously considered. Within this approach, equivalent current limits on
the WIMP-nucleon interaction at WIMP mass of 50 GeV/c are either
pb, pb or ,
depending on the choice of cross section or coupling strength
representation. These limits become less restrictive for either larger or
smaller masses; they are less restrictive than those from the traditional odd
group approximation regardless of WIMP mass. Combination of experimental
results are seen to produce significantly more restrictive limits than those
obtained from any single experiment. Experiments traditionally considered
spin-independent are moreover found to severely limit the spin-dependent phase
space. The extension of this analysis to the case of positive signal
experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.
Logic Programming and Logarithmic Space
We present an algebraic view on logic programming, related to proof theory
and more specifically linear logic and geometry of interaction. Within this
construction, a characterization of logspace (deterministic and
non-deterministic) computation is given via a synctactic restriction, using an
encoding of words that derives from proof theory.
We show that the acceptance of a word by an observation (the counterpart of a
program in the encoding) can be decided within logarithmic space, by reducing
this problem to the acyclicity of a graph. We show moreover that observations
are as expressive as two-ways multi-heads finite automata, a kind of pointer
machines that is a standard model of logarithmic space computation
Polarization state of the optical near-field
The polarization state of the optical electromagnetic field lying several
nanometers above complex dielectric structures reveals the intricate
light-matter interaction that occurs in this near-field zone. This information
can only be extracted from an analysis of the polarization state of the
detected light in the near-field. These polarization states can be calculated
by different numerical methods well-suited to near--field optics. In this
paper, we apply two different techniques (Localized Green Function Method and
Differential Theory of Gratings) to separate each polarisation component
associated with both electric and magnetic optical near-fields produced by
nanometer sized objects. The analysis is carried out in two stages: in the
first stage, we use a simple dipolar model to achieve insight into the physical
origin of the near-field polarization state. In the second stage, we calculate
accurate numerical field maps, simulating experimental near-field light
detection, to supplement the data produced by analytical models. We conclude
this study by demonstrating the role played by the near-field polarization in
the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
- …