82 research outputs found

    Use of bacterial photosynthetic vesicles to evaluate the effect of ionic liquids on the permeability of biological membranes

    Get PDF
    : Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non‐sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (Δι). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the Δι dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane Δι even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs

    Probing light-induced conformational transitions in bacterial photosynthetic reaction centers embedded in trehalose–water amorphous matrices

    Get PDF
    AbstractThe coupling between electron transfer and protein dynamics has been studied in photosynthetic reaction centers (RC) from Rhodobacter sphaeroides by embedding the protein into room temperature solid trehalose–water matrices. Electron transfer kinetics from the primary quinone acceptor (QA−) to the photoxidized donor (P+) were measured as a function of the duration of photoexcitation from 20 ns (laser flash) to more than 1 min. Decreasing the water content of the matrix down to ≈5×103 water molecules per RC causes a reversible four-times acceleration of P+QA− recombination after the laser pulse. By comparing the broadly distributed kinetics observed under these conditions with the ones measured in glycerol–water mixtures at cryogenic temperatures, we conclude that RC relaxation from the dark-adapted to the light-adapted state and thermal fluctuations among conformational substates are hindered in the room temperature matrix over the time scale of tens of milliseconds. When the duration of photoexcitation is increased from a few milliseconds to the second time scale, recombination kinetics of P+QA− slows down progressively and becomes less distributed, indicating that even in the driest matrices, during continuous illumination, the RC is gaining a limited conformational freedom that results in partial stabilization of P+QA−. This behavior is consistent with a tight structural and dynamical coupling between the protein surface and the trehalose–water matrix

    water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR

    Get PDF
    Using isotope labeled water (D2O and H217O) and pulsed W-band (94 GHz) high- field multiresonance EPR spectroscopies, such as ELDOR-detected NMR and ENDOR, the biologically important question of detection and quantification of local water in proteins is addressed. A bacterial reaction center (bRC) from Rhodobacter sphaeroides R26 embedded into a trehalose glass matrix is used as a model system. The bRC hosts the two native radical cofactor ions Image ID:c7cp03942e-t1.gif (primary electron donor) and Image ID:c7cp03942e-t2.gif (primary electron acceptor) as well as an artificial nitroxide spin label site-specifically attached to the surface of the H-protein domain. The three paramagnetic reporter groups have distinctly different local environments. They serve as local probes to detect water molecules via magnetic interactions (electron–nuclear hyperfine and quadrupole) with either deuterons or 17O nuclei. bRCs were equilibrated in an atmosphere of different relative humidities allowing us to control precisely the hydration levels of the protein. We show that by using oxygen-17 labeled water quantitative conclusions can be made in contrast to using D2O which suffers from proton–deuterium exchange processes in the protein. From the experiments we also conclude that dry trehalose operates as an anhydrobiotic protein stabilizer in line with the “anchorage hypothesis” of bio-protection. It predicts selective changes in the first solvation shell of the protein upon trehalose–matrix dehydration with subsequent changes in the hydrogen-bonding network. Changes in hydrogen-bonding patterns usually have an impact on the global function of a biological system

    Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins.

    Get PDF
    In the present work a data analysis approach, based on XAFS data, is proposed for the identification of most probable binding motifs of unknown mononuclear zinc sites in metalloproteins. This approach combines multiple-scattering EXAFS analysis performed within the rigid-body refinement scheme, nonmuffin- tin ab initio XANES simulations, average structural information on amino acids and metal binding clusters provided by the Protein Data Bank, and Debye–Waller factor calculations based on density functional theory. The efficiency of the method is tested by using three reference zinc proteins for which the local structure around the metal is already known from protein crystallography. To show the applicability of the present analysis to structures not deposited in the Protein Data Bank, the XAFS spectra of six mononuclear zinc binding sites present in diverse membrane proteins, for which we have previously proposed the coordinating amino acids by applying a similar approach, is also reported. By comparing the Zn K-edge XAFS features exhibited by these proteins with those pertaining to the reference structures, key spectral characteristics, related to specific binding motifs, are observed. These case studies exemplify the combined data analysis proposed and further support its validity

    Prevalence and type distribution of human papillomavirus infection in women from North Sardinia, Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) has been associated with several disorders of the genital tract, skin and oropharynx. The aims of our study were to evaluate the prevalence of HPV infection in women between 15 and 54 years of age in North Sardinia, Italy, to identify the prevalence of High Risk - Human papillomaviruses (HR-HPV) genotypes and to establish a correlation between molecular and cytological results.</p> <p>Methods</p> <p>From 2007 to 2009 we consecutively enrolled women aged 15-54 years admitted to public and private outpatient settings. All the participants filled in a questionnaire about the socio-cultural state, sexual activity and awareness about HPV. 323 cervical specimens were tested for HPV-DNA and HPV genotypes with INNO-LiPA HPV Genotyping CE Amp kit. Samples showing positivity to some HPV genotypes were re-tested using "in house" quantitative Real-Time PCR assays.</p> <p>Results</p> <p>Overall HPV-DNA positivity was detected in 35.9% of the women. The prevalence of HR-HPV infection among HPV positive samples was 93.1% with a specific prevalence of HPV 16, 51, 31, 53 and 18 of 54.3%, 37.9%, 10.3%, 6.9% and 5.2%, respectively. Co-infection with any HPV, HR-HPV, LR-HPV and HR/LR-HPV type was 18.3%, 14.9%, 0.9% and 2.5%, respectively; HPV 16/51 co-infection was detected in 64.6% of the HR-HPV co-infection group. The most frequent HPV-genotypes detected were 16 (32.5%) and 51 (22.7%). Among the 57 patients harboring mono-infection the most prevalent HPV genotypes were 16 (38.6%) and 31(10.5%). A multivariate analysis identified a statistical significant association between HPV infection and age and between HPV infection and previous sexual transmitted diseases. A statistically significant association between cytological cervical lesions and generic HPV exposure was identified.</p> <p>Conclusions</p> <p>To our knowledge, this is the first survey evaluating the prevalence of HPV infection in Northern Sardinia and drawing attention to the unusual high proportion of genotype HPV 51. Given the recent implementation of a widespread immunization program with vaccines not containing HPV 51, it has been relevant to prove the high prevalence of this HPV genotype from the start of the vaccination campaign, in order to avoid in the future attributing to the vaccination program a possible selection effect (HPV replacement).</p

    PS 2

    No full text

    RC batterici

    No full text

    Rodopsina

    No full text

    Fotoliasi

    No full text

    Ficobilisomi, PCP

    No full text
    • 

    corecore