163 research outputs found

    Surface-antigen expression profiling of B cell chronic lymphocytic leukemia: from the signature of specific disease subsets to the identification of markers with prognostic relevance

    Get PDF
    Studies of gene expression profiling have been successfully used for the identification of molecules to be employed as potential prognosticators. In analogy with gene expression profiling, we have recently proposed a novel method to identify the immunophenotypic signature of B-cell chronic lymphocytic leukemia subsets with different prognosis, named surface-antigen expression profiling. According to this approach, surface marker expression data can be analysed by data mining tools identical to those employed in gene expression profiling studies, including unsupervised and supervised algorithms, with the aim of identifying the immunophenotypic signature of B-cell chronic lymphocytic leukemia subsets with different prognosis. Here we provide an overview of the overall strategy employed for the development of such an "outcome class-predictor" based on surface-antigen expression signatures. In addition, we will also discuss how to transfer the obtained information into the routine clinical practice by providing a flow-chart indicating how to select the most relevant antigens and build-up a prognostic scoring system by weighing each antigen according to its predictive power. Although referred to B-cell chronic lymphocytic leukemia, the methodology discussed here can be also useful in the study of diseases other than B-cell chronic lymphocytic leukemia, when the purpose is to identify novel prognostic determinants

    The addition of rituximab to fludarabine improves clinical outcome in untreated patients with ZAP-70-negative chronic lymphocytic leukemia.

    Get PDF
    Clinical trials of monoclonal antibodies in combination with chemotherapy have reported previously unattained response rates in patients with B-cell chronic lymphocytic leukemia (B-CLL); however, the analysis of ZAP-70 protein and/or CD38 may explain better the discordant outcomes independent of treatment

    Intrinsic and extrinsic factors influencing the clinical course of B-cell chronic lymphocytic leukemia: prognostic markers with pathogenetic relevance

    Get PDF
    B-cell chronic lymphocytic leukemia (CLL), the most frequent leukemia in the Western world, is characterized by extremely variable clinical courses with survivals ranging from 1 to more than 15 years. The pathogenetic factors playing a key role in defining the biological features of CLL cells, hence eventually influencing the clinical aggressiveness of the disease, are here divided into "intrinsic factors", mainly genomic alterations of CLL cells, and "extrinsic factors", responsible for direct microenvironmental interactions of CLL cells; the latter group includes interactions of CLL cells occurring via the surface B cell receptor (BCR) and dependent to specific molecular features of the BCR itself and/or to the presence of the BCR-associated molecule ZAP-70, or via other non-BCR-dependent interactions, e.g. specific receptor/ligand interactions, such as CD38/CD31 or CD49d/VCAM-1. A putative final model, discussing the pathogenesis and the clinicobiological features of CLL in relationship of these factors, is also provided

    Prognostic impact of ZAP-70 expression in chronic lymphocytic leukemia: mean fluorescence intensity T/B ratio versus percentage of positive cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ZAP-70 is an independent negative prognostic marker in chronic lymphocytic leukemia (CLL). Usually, its expression is investigated by flow cytometric protocols in which the percentage of ZAP-70 positive CLL cells is determined in respect to isotypic control (ISO-method) or residual ZAP-70 positive T cells (T-method). These methods, however, beside suffering of an inherent subjectivity in their application, may give discordant results in some cases. The aim of this study was to assess the prognostic significance of these methods in comparison with another in which ZAP-70 expression was evaluated as a Mean-Fluorescence-Intensity Ratio between gated T and CLL cells (T/B Ratio-method).</p> <p>Methods</p> <p>Cytometric files relative to ZAP-70 determination according to the three readouts were retrospectively reviewed on a cohort of 173 patients (test set), all with complete clinical and biological prognostic assessment and time-to-treatment (TTT) available. Findings were then validated in an independent cohort of 341 cases from a different institution (validation set).</p> <p>Results</p> <p>The optimal prognostic cut-offs for ZAP-70 expression were selected at 11% (ISO-method) or 20% of positive cells (T-method), as well as at 3.0 (T/B Ratio-method) in the test set; these cut-offs yielded 66, 60 and 73 ZAP-70<sup>+ </sup>cases, respectively. Univariate analyses resulted in a better separation of ZAP-70<sup>+ </sup>vs. ZAP-70<sup>- </sup>CLL patients utilizing the T/B Ratio, compared to T- or ISO-methods. In multivariate analyses which included the major clinical and biological prognostic markers for CLL, the prognostic impact of ZAP-70 appeared stronger when the T/B-Ratio method was applied. These findings were confirmed in the validation set, in which ZAP-70 expression, evaluated by the T- (cut-off = 20%) or T/B Ratio- (cut-off = 3.0) methods, yielded 180 or 127 ZAP-70<sup>+ </sup>cases, respectively. ZAP-70<sup>+ </sup>patients according to the T/B Ratio-method had shorter TTT, both if compared to ZAP-70<sup>- </sup>CLL, and to cases classified ZAP-70<sup>+ </sup>by the T-method only.</p> <p>Conclusions</p> <p>We suggest to evaluate ZAP-70 expression in routine settings using the T/B Ratio-method, given the operator and laboratory independent feature of this approach. We propose the 3.0 T/B Ratio value as optimal cut-off to discriminate ZAP-70<sup>+ </sup>(T/B Ratio less than 3.0) from ZAP-70<sup>- </sup>(T/B Ratio more/equal than 3.0) cases.</p

    CD49d Is the strongest flow cytometry–based predictor of overall survival in chronic lymphocytic leukemia

    Get PDF
    Purpose Although CD49d is an unfavorable prognostic marker in chronic lymphocytic leukemia (CLL), definitive validation evidence is lacking. A worldwide multicenter analysis was performed using published and unpublished CLL series to evaluate the impact of CD49d as an overall (OS) and treatment-free survival (TFS) predictor. Patients and Methods A training/validation strategy was chosen to find the optimal CD49d cutoff. The hazard ratio (HR) for death and treatment imposed by CD49d was estimated by pooled analysis of 2,972 CLLs; Cox analysis stratified by center and stage was used to adjust for confounding variables. The importance of CD49d over other flow cytometry–based prognosticators (eg, CD38, ZAP-70) was ranked by recursive partitioning. Results Patients with ≥ 30% of neoplastic cells expressing CD49d were considered CD49d+. Decrease in OS at 5 and 10 years among CD49d+ patients was 7% and 23% (decrease in TFS, 26% and 25%, respectively). Pooled HR of CD49d for OS was 2.5 (2.3 for TFS) in univariate analysis. This HR remained significant and of similar magnitude (HR, 2.0) in a Cox model adjusted for clinical and biologic prognosticators. Hierarchic trees including all patients or restricted to those with early-stage disease or those age ≤ 65 years always selected CD49d as the most important flow cytometry–based biomarker, with negligible additional prognostic information added by CD38 or ZAP-70. Consistently, by bivariate analysis, CD49d reliably identified patient subsets with poorer outcome independent of CD38 and ZAP-70. Conclusion In this analysis of approximately 3,000 patients, CD49d emerged as the strongest flow cytometry–based predictor of OS and TFS in CLL

    Thrombotic and bleeding complications in patients with chronic lymphocytic leukemia and severe COVID-19: a study of ERIC, the European Research Initiative on CLL

    Get PDF
    Background: Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to COVID-19 related poor outcomes, including thrombosis and death, due to the advanced age, the presence of comorbidities, and the disease and treatment-related immune deficiency. The aim of this study was to assess the risk of thrombosis and bleeding in patients with CLL affected by severe COVID-19. Methods: This is a retrospective multicenter study conducted by ERIC, the European Research Initiative on CLL, including patients from 79 centers across 22 countries. Data collection was conducted between April and May 2021. The COVID-19 diagnosis was confirmed by the real-time polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 on nasal or pharyngeal swabs. Severe cases of COVID-19 were defined by hospitalization and the need of oxygen or admission into ICU. Development and type of thrombotic events, presence and severity of bleeding complications were reported during treatment for COVID-19. Bleeding events were classified using ISTH definition. STROBE recommendations were used in order to enhance reporting. Results: A total of 793 patients from 79 centers were included in the study with 593 being hospitalized (74.8%). Among these, 511 were defined as having severe COVID: 162 were admitted to the ICU while 349 received oxygen supplementation outside the ICU. Most patients (90.5%) were receiving thromboprophylaxis. During COVID-19 treatment, 11.1% developed a thromboembolic event, while 5.0% experienced bleeding. Thrombosis developed in 21.6% of patients who were not receiving thromboprophylaxis, in contrast to 10.6% of patients who were on thromboprophylaxis. Bleeding episodes were more frequent in patients receiving intermediate/therapeutic versus prophylactic doses of low-molecular-weight heparin (LWMH) (8.1% vs. 3.8%, respectively) and in elderly. In multivariate analysis, peak D-dimer level and C-reactive protein to albumin ratio were poor prognostic factors for thrombosis occurrence (OR = 1.022, 95%CI 1.007?1.038 and OR = 1.025, 95%CI 1.001?1.051, respectively), while thromboprophylaxis use was protective (OR = 0.199, 95%CI 0.061?0.645). Age and LMWH intermediate/therapeutic dose administration were prognostic factors in multivariate model for bleeding (OR = 1.062, 95%CI 1.017-1.109 and OR = 2.438, 95%CI 1.023-5.813, respectively). Conclusions: Patients with CLL affected by severe COVID-19 are at a high risk of thrombosis if thromboprophylaxis is not used, but also at increased risk of bleeding under the LMWH intermediate/therapeutic dose administration

    IGHV gene mutational status and 17p deletion are independent molecular predictors in a comprehensive clinical-biological prognostic model for overall survival prediction in chronic lymphocytic leukemia

    Get PDF
    Prognostic index for survival estimation by clinical-demographic variables were previously proposed in chronic lymphocytic leukemia (CLL) patients. Our objective was to test in a large retrospective cohort of CLL patients the prognostic power of biological and clinical-demographic variable in a comprehensive multivariate model. A new prognostic index was proposed

    IGLV3-21*01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling

    Get PDF
    The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21-derived heavy chains (HCs) with IGLV3-21-derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable and constant LC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110-expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21*01 facilitates effective homotypic BCR-BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21*01-expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to subset 2L by including all IGLV3-21R110-expressing CLL cases regardless of IGHV mutational status. Moreover, the generation of monoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors
    corecore