2,601 research outputs found

    Radiation Pressure Induced Einstein-Podolsky-Rosen Paradox

    Get PDF
    We demonstrate the appearance of Einstein-Podolsky-Rosen (EPR) paradox when a radiation field impinges on a movable mirror. The, the possibility of a local realism test within a pendular Fabry-Perot cavity is shown to be feasible.Comment: 4 pages ReVTeX, 1 eps figur

    Bosonic Memory Channels

    Full text link
    We discuss a Bosonic channel model with memory effects. It relies on a multi-mode squeezed (entangled) environment's state. The case of lossy Bosonic channels is analyzed in detail. We show that in the absence of input energy constraints the memory channels are equivalent to their memoryless counterparts. In the case of input energy constraint we provide lower and upper bounds for the memory channel capacity.Comment: 6 pages, 2 figure

    Inequalities for quantum channels assisted by limited resources

    Full text link
    The information capacities and ``distillability'' of a quantum channel are studied in the presence of auxiliary resources. These include prior entanglement shared between the sender and receiver and free classical bits of forward and backward communication. Inequalities and trade-off curves are derived. In particular an alternative proof is given that in the absence of feedback and shared entanglement, forward classical communication does not increase the quantum capacity of a channel.Comment: 8 pages, 4 figures (references updated, minor changes

    Mediated Homogenization

    Full text link
    Homogenization protocols model the quantum mechanical evolution of a system to a fixed state independently from its initial configuration by repeatedly coupling it with a collection of identical ancillas. Here we analyze these protocols within the formalism of "relaxing" channels providing an easy to check sufficient condition for homogenization. In this context we describe mediated homogenization schemes where a network of connected qudits relaxes to a fixed state by only partially interacting with a bath. We also study configurations which allow us to introduce entanglement among the elements of the network. Finally we analyze the effect of having competitive configurations with two different baths and we prove the convergence to dynamical equilibrium for Heisenberg chains.Comment: 6 pages, 6 figure

    First-principles study of the interaction and charge transfer between graphene and metals

    Get PDF
    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene pzp_z-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.Comment: 12 pages, 9 figure

    A Lorentz-invariant look at quantum clock synchronization protocols based on distributed entanglement

    Full text link
    Recent work has raised the possibility that quantum information theory techniques can be used to synchronize atomic clocks nonlocally. One of the proposed algorithms for quantum clock synchronization (QCS) requires distribution of entangled pure singlets to the synchronizing parties. Such remote entanglement distribution normally creates a relative phase error in the distributed singlet state which then needs to be purified asynchronously. We present a fully relativistic analysis of the QCS protocol which shows that asynchronous entanglement purification is not possible, and, therefore, that the proposed QCS scheme remains incomplete. We discuss possible directions of research in quantum information theory which may lead to a complete, working QCS protocol.Comment: 5 pages; typeset in RevTe

    Non-Markovian quantum feedback from homodyne measurements: the effect of a non-zero feedback delay time

    Get PDF
    We solve exactly the non-Markovian dynamics of a cavity mode in the presence of a feedback loop based on homodyne measurements, in the case of a non-zero feedback delay time. With an appropriate choice of the feedback parameters, this scheme is able to significantly increase the decoherence time of the cavity mode, even for delay times not much smaller than the decoherence time itself

    Optimal estimation of quantum observables

    Full text link
    We consider the problem of estimating the ensemble average of an observable on an ensemble of equally prepared identical quantum systems. We show that, among all kinds of measurements performed jointly on the copies, the optimal unbiased estimation is achieved by the usual procedure that consists in performing independent measurements of the observable on each system and averaging the measurement outcomes.Comment: Submitted to J. Math Phy

    Non-Linear Beam Splitter in Bose-Einstein Condensate Interferometers

    Full text link
    A beam splitter is an important component of an atomic/optical Mach-Zehnder interferometer. Here we study a Bose Einstein Condensate beam splitter, realized with a double well potential of tunable height. We analyze how the sensitivity of a Mach Zehnder interferometer is degraded by the non-linear particle-particle interaction during the splitting dynamics. We distinguish three regimes, Rabi, Josephson and Fock, and associate to them a different scaling of the phase sensitivity with the total number of particles.Comment: draft, 19 pages, 10 figure
    • …
    corecore