53 research outputs found

    Functional and Structural Impairments in the Perirhinal Cortex of a Mouse Model of CDKL5 Deficiency Disorder Are Rescued by a TrkB Agonist

    Get PDF
    Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental encephalopathy caused by mutations in the CDKL5 gene and characterized by early-onset epilepsy and intellectual and motor impairments. No cure is currently available for CDD patients, as limited knowledge of the pathology has hindered the development of therapeutics. Cdkl5 knockout (KO) mouse models, recently created to investigate the role of CDKL5 in the etiology of CDD, recapitulate various features of the disorder. Previous studies have shown alterations in synaptic plasticity and dendritic pattern in the cerebral cortex and in the hippocampus, but the knowledge of the molecular substrates underlying these alterations is still limited. Here, we have examined for the first time synaptic function and plasticity, dendritic morphology, and signal transduction pathways in the perirhinal cortex (PRC) of this mouse model. Being interconnected with a wide range of cortical and subcortical structures and involved in various cognitive processes, PRC provides a very interesting framework for examining how CDKL5 mutation leads to deficits at the synapse, circuit, and behavioral level. We found that long-term potentiation (LTP) was impaired, and that the TrkB/PLCγ1 pathway could be mechanistically involved in this alteration. PRC neurons in mutant mice showed a reduction in dendritic length, dendritic branches, PSD-95-positive puncta, GluA2-AMPA receptor levels, and spine density and maturation. These functional and structural deficits were associated with impairment in visual recognition memory. Interestingly, an in vivo treatment with a TrkB agonist (the 7,8-DHF prodrug R13) to trigger the TrkB/PLCγ1 pathway rescued defective LTP, dendritic pattern, PSD-95 and GluA2-AMPA receptor levels, and restored visual recognition memory in Cdkl5 KO mice. Present findings demonstrate a critical role of TrkB signaling in the synaptic development alterations due to CDKL5 mutation, and suggest the possibility of TrkB-targeted pharmacological interventions

    Non-Thermal Radio Frequency and Static Magnetic Fields Increase Rate of Hemoglobin Deoxygenation in a Cell-Free Preparation

    Get PDF
    The growing body of clinical and experimental data regarding electromagnetic field (EMF) bioeffects and their therapeutic applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF) signal, and a static magnetic field (SMF), applied independently, increased the rate of deoxygenation of human hemoglobin (Hb) in a cell-free assay. Deoxygenation of Hb was initiated using the reducing agent dithiothreitol (DTT) in an assay that allowed the time for deoxygenation to be controlled (from several min to several hours) by adjusting the relative concentrations of DTT and Hb. The time course of Hb deoxygenation was observed using visible light spectroscopy. Exposure for 10–30 min to either PRF or SMF increased the rate of deoxygenation occurring several min to several hours after the end of EMF exposure. The sensitivity and biochemical simplicity of the assay developed here suggest a new research tool that may help to further the understanding of basic biophysical EMF transduction mechanisms. If the results of this study were to be shown to occur at the cellular and tissue level, EMF-enhanced oxygen availability would be one of the mechanisms by which clinically relevant EMF-mediated enhancement of growth and repair processes could occur

    Figure di Neurofisiologia (Farmacia)

    No full text

    Young Blood Plasma Administration to Fight Alzheimer's Disease?

    No full text
    Despite decades of intensive research, no drugs can cure or even stabilize Alzheimer's disease (AD). Current pharmacological treatments only partially mask the symptoms while the disease progresses within the brain. Finding a preventive measure or a cure for people with AD is indeed a worldwide urgent priority. A recent interesting study by T. Wyss-Coray's research group provides the first evidence that exposure to young blood or plasma can reverse some AD-related molecular and behavioral alterations. Heterochronic parabiosis (shared blood circulation) of AD transgenic mice with young healthy mice did not reduce amyloidosis and microglial activation in AD mice, but reversed the loss of synaptophysin and calbindin (critical synaptic proteins, indicators of cognitive decline in AD) in the dentate gyrus, and the abnormal expression, in the hippocampus, of many genes involved in key neuronal signaling pathways. Moreover, repeated intravenous administration of plasma from young healthy mice to AD mice reversed the excessive phosphorylation of hippocampal extracellular signal-regulated kinase (ERK), and improved spatial working memory and associative memory. Although observations in mouse models of AD might not necessarily extrapolate to humans, this preclinical study provides the first demonstration that young plasma has potential therapeutic properties, by ameliorating aspects of the disease that are present in AD patients. Clinical trials are already under way. If young plasma transfusion will be effective in AD patients, it will be important to identify the key factors responsible for the positive effects, as they might lead to the development of molecule interventions with a better efficacy/risk profile

    Hypoxia Depresses Synaptic Transmission in the Primary Motor Cortex of the Infant Rat—Role of Adenosine A1 Receptors and Nitric Oxide

    Get PDF
    The acute and long-term consequences of perinatal asphyxia have been extensively investigated, but only a few studies have focused on postnatal asphyxia. In particular, electrophysiological changes induced in the motor cortex by postnatal asphyxia have not been examined so far, despite the critical involvement of this cortical area in epilepsy. In this study, we exposed primary motor cortex slices obtained from infant rats in an age window (16–18 day-old) characterized by high incidence of hypoxia-induced seizures associated with epileptiform motor behavior to 10 min of hypoxia. Extracellular field potentials evoked by horizontal pathway stimulation were recorded in layers II/III of the primary motor cortex before, during, and after the hypoxic event. The results show that hypoxia reversibly depressed glutamatergic synaptic transmission and neuronal excitability. Data obtained in the presence of specific blockers suggest that synaptic depression was mediated by adenosine acting on pre-synaptic A1 receptors to decrease glutamate release, and by a nitric oxide (NO)/cGMP postsynaptic pathway. These effects are neuroprotective because they limit energy failure. The present findings may be helpful in the preclinical search for therapeutic strategies aimed at preventing acute and long-term neurological consequences of postnatal asphyxia

    Downloaded from

    No full text
    on Information Technologies

    Attitude Feedback Control: Unconstrained and Nonholonomic Constrained Cases

    No full text
    • …
    corecore