313 research outputs found

    QBO modulation of the semiannual oscillation in MAECHAM5 and HAMMONIA

    Get PDF
    The quasi-biennial oscillation (QBO) signature in the equatorial upper stratosphere and mesosphere is analyzed from MAECHAM5 and HAMMONIA general circulation models. Our results show that this region is significantly influenced by the stratospheric QBO. In the upper stratosphere the QBO modulates the altitude of maximum descent of the stratospheric semiannual oscillation (SSAO) westerly phases. Our results also suggest that the QBO modulates the altitude of maximum descent and also the strength of the SSAO easterly phase. We explore the role of large-scale and small-scale waves and also momentum advection in the forcing of the QBO signature in the SSAO domain. The results show how the vertical propagation of the QBO signature to the middle and upper mesosphere depends on the vertical phase structure of the SAO and consequently on the seasonal cycle. During the solstices when MSAO westerlies prevail in the middle and upper mesosphere no QBO signature can be detected above the stratopause region. However, during the equinoxes, when MSAO easterlies dominate in the middle and upper mesosphere, the QBO signature extends throughout the mesosphere and low thermosphere. The QBO directly modulates MSAO easterlies by modifying the altitude at which they are generated in the upper mesosphere. A QBO signature is also detected on the MSAO westerly phase occurring in the mesopause region during the equinoxes. Copyright © 2010 by the American Geophysical Union

    Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy

    Get PDF
    Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 \mu m signal, which yields powers above 500 mW (3 \mu W/mode) in the idler with spectra covering 2.8 \mu m to 3.5 \mu m. Potential for broadband, high-resolution molecular spectroscopy is demonstrated by absorption spectra and interferograms obtained by heterodyning two combs.Comment: 11 pages, 8 figure

    Stratosphere troposphere coupling: the influence of volcanic eruptions

    Get PDF
    Stratospheric sulfate aerosols produced by major volcanic eruptions modify the radiative and dynamical properties of the troposphere and stratosphere through their reflection of solar radiation and absorption of infrared radiation. At the Earth's surface, the primary consequence of a large eruption is cooling, however, it has long been known that major tropical eruptions tend to be followed by warmer than usual winters over the Northern Hemisphere (NH) continents. This volcanic "winter-warming" effect in the NH is understood to be the result of changes in atmospheric circulation patterns resulting from heating in the stratosphere, and is often described as positive anomalies of the Northern Annular Mode (NAM) that propagate downward from the stratosphere to the troposphere. In the southern hemisphere, climate models tend to also predict a positive Southern Annular Mode (SAM) response to volcanic eruptions, but this is generally inconsistent with post-eruption observations during the 20th century. We review present understanding of the influence of volcanic eruptions on the large scale modes of atmospheric variability in both the Northern and Southern Hemispheres. Using models of varying complexity, including an aerosol-climate model, an Earth system model, and CMIP5 simulations, we assess the ability of climate models to reproduce the observed post-eruption climatic and dynamical anomalies. We will also address the parametrization of volcanic eruptions in simulations of the past climate, and identify possibilities for improvemen

    Mid-infrared quantum cascade detectors for applications inspectroscopy and pyrometry

    Get PDF
    In this paper, we give an overview of quantum cascade detector technology for the near- and mid-infrared wavelength range. Thanks to their photovoltaic operating principle, the most advanced quantum cascade detectors offer great opportunities in terms of high detection speed, reliable room temperature operation, and excellent Johnson noise limited detectivity. Besides some important features dealing with their fabrication and their general characteristics, we will also briefly present some possibilities for performance improvement. Elementary theoretical considerations adopted from photoconductive detectors confirm that optimization of such devices always involves various trade-off

    The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption

    Get PDF
    This paper provides an overview of the scientific background and the research objectives of the Research Unit “VolImpact” (Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption, FOR 2820). VolImpact was recently funded by the Deutsche Forschungsgemeinschaft (DFG) and started in spring 2019. The main goal of the research unit is to improve our understanding of how the climate system responds to volcanic eruptions. Such an ambitious program is well beyond the capabilities of a single research group, as it requires expertise from complementary disciplines including aerosol microphysical modelling, cloud physics, climate modelling, global observations of trace gas species, clouds and stratospheric aerosols. The research goals will be achieved by building on important recent advances in modelling and measurement capabilities. Examples of the advances in the observations include the now daily near-global observations of multi-spectral aerosol extinction from the limb-scatter instruments OSIRIS, SCIAMACHY and OMPS-LP. In addition, the recently launched SAGE III/ISS and upcoming satellite missions EarthCARE and ALTIUS will provide high resolution observations of aerosols and clouds. Recent improvements in modeling capabilities within the framework of the ICON model family now enable simulations at spatial resolutions fine enough to investigate details of the evolution and dynamics of the volcanic eruptive plume using the large-eddy resolving version, up to volcanic impacts on larger-scale circulation systems in the general circulation model version. When combined with state-of-the-art aerosol and cloud microphysical models, these approaches offer the opportunity to link eruptions directly to their climate forcing. These advances will be exploited in VolImpact to study the effects of volcanic eruptions consistently over the full range of spatial and temporal scales involved, addressing the initial development of explosive eruption plumes (project VolPlume), the variation of stratospheric aerosol particle size and radiative forcing caused by volcanic eruptions (VolARC), the response of clouds (VolCloud), the effects of volcanic eruptions on atmospheric dynamics (VolDyn), as well as their climate impact (VolClim)

    Impact of an improved radiation scheme in the MAECHAM5 General Circulation Model

    Get PDF
    In order to improve the representation of the shortwave radiative transfer in the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased and extended in the UV-B and UV-C bands. The upgraded shortwave parameterization is first validated offline with a 4 stream discrete-ordinate line-by-line model. Thereafter, two 20-years simulations with the MAECHAM5 middle atmosphere general circulation model are performed to evaluate the temperature changes and the dynamical feedbacks arising from the newly introduced parameterization. The offline clear-sky comparison of the standard and upgraded parameterizations with the discrete ordinate model shows considerable improvement for the upgraded parameterization in terms of shortwave fluxes and heating rates. In the simulation with the upgraded ratiation parameterization, we report a significant warming of almost the entire atmosphere, largest at 1 hPa at the stratopause, and stronger zonal mean zonal winds in the middle atmosphere. The warming at the summer stratopause alleviates the cold bias present in the model when the standard radiation scheme is used. The stronger zonal mean zonal winds induce a dynamical feedback that results in a dynamical warming (cooling) of the polar winter (summer) mesosphere, caused by an increased downward (upward)circulation in the winter (summer) hemisphere. In the troposphere, the changes in the spectral resolution and the associated changes in the cloud optical parameters introduce a relatively small warming and, consistenly, a moisteneing. The warming occurs mostly in the upper troposphere and can contribute to a possible improvement of the model temperature climatology
    • …
    corecore