470 research outputs found

    Curriculum-based course timetabling with student flow, soft constraints, and smoothing objectives: an application to a real case study

    Get PDF
    This paper deals with curriculum-based course timetabling. In particular, we describe the results of a real application at the University of Rome “Tor Vergata.” In this regard, we developed a multi-objective mixed-integer model which attempts to optimize (i) the flow produced by the students enrolled in the lectures, (ii) soft conflicts produced by the possible overlap among compulsory and non-compulsory courses, and (iii) the number of lecture hours per curriculum within the weekdays. The model has been implemented and solved by means of a commercial solver and experiments show that the model is able to provide satisfactory solutions as compared with the real scenario under consideration

    A Matheuristic Approach for the Multi-Depot Periodic Petrol Station Replenishment Problem

    Get PDF
    Planning petrol station replenishment is an important logistics activity for all the major oil companies. The studied Multi-Depot Periodic Petrol Station Replenishment problem derives from a real case in which the company must replenish a set of petrol stations from a set of depots, during a weekly planning horizon. The company must ensure refuelling according to available visiting patterns, which can be different from customer to customer. A visiting pattern predefines how many times (days) the replenishment occurs during a week and in which visiting days how much fuel must be delivered. To fulfil the weekly demand of each petrol station, one of the available replenishment plans must be selected among a given set of visiting patterns. The aim is to minimize the total distance travelled by the fleet of tank trucks during the entire planning horizon. We provide a math-heuristic approach, based on cluster-first route-second paradigm, to solve it. We thoroughly experiment our approach on a set of realistic random instances. Finally, we consider a weekly large real instance with 194 petrol stations and 2 depots

    An approximation result for a periodic allocation problem

    Get PDF
    AbstractIn this paper we study a periodic allocation problem which is a generalization of the dynamic storage allocation problem to the case in which the arrival and departure time of each item is periodically repeated. These problems are equivalent to the interval coloring problem on weighted graphs in which each feasible solution corresponds to an acyclic orientation, and the solution value is equal to the length of the longest weighted path of the oriented graph. Optimal solutions correspond to acyclic orientations having the length of longest weighted path as small as possible. We prove that for the interval coloring problem on a class of circular arc graphs, and hence for a periodic allocation problem, there exists an approximation algorithm that finds a feasible solution whose value is at most two times the optimal

    Decentralizing Coordination in Open Vehicle Fleets for Scalable and Dynamic Task Allocation

    Full text link
    One of the major challenges in the coordination of large, open, collaborative, and commercial vehicle fleets is dynamic task allocation. Self-concerned individually rational vehicle drivers have both local and global objectives, which require coordination using some fair and efficient task allocation method. In this paper, we review the literature on scalable and dynamic task allocation focusing on deterministic and dynamic two-dimensional linear assignment problems. We focus on multiagent system representation of open vehicle fleets where dynamically appearing vehicles are represented by software agents that should be allocated to a set of dynamically appearing tasks. We give a comparison and critical analysis of recent research results focusing on centralized, distributed, and decentralized solution approaches. Moreover, we propose mathematical models for dynamic versions of the following assignment problems well known in combinatorial optimization: the assignment problem, bottleneck assignment problem, fair matching problem, dynamic minimum deviation assignment problem, k\sum_{k}-assignment problem, the semiassignment problem, the assignment problem with side constraints, and the assignment problem while recognizing agent qualification; all while considering the main aspect of open vehicle fleets: random arrival of tasks and vehicles (agents) that may become available after assisting previous tasks or by participating in the fleet at times based on individual interest

    Lactobacilli extracellular vesicles: potential postbiotics to support the vaginal microbiota homeostasis

    Get PDF
    Background: Lactobacillus species dominate the vaginal microflora performing a first-line defense against vaginal infections. Extracellular vesicles (EVs) released by lactobacilli are considered mediators of their beneficial effects affecting cellular communication, homeostasis, microbial balance, and host immune system pathways. Up to now, very little is known about the role played by Lactobacillus EVs in the vaginal microenvironment, and mechanisms of action remain poorly understood. Results: Here, we hypothesized that EVs can mediate lactobacilli beneficial effects to the host by modulating the vaginal microbiota colonization. We recovered and characterized EVs produced by two vaginal strains, namely Lactobacillus crispatus BC5 and Lactobacillus gasseri BC12. EVs were isolated by ultracentrifugation and physically characterized by Nanoparticle Tracking Analysis (NTA) and Dynamic Light Scattering (DLS). EVs protein and nucleic acids (DNA and RNA) content was also evaluated. We explored the role of EVs on bacterial adhesion and colonization, using a cervical cell line (HeLa) as an in vitro model. Specifically, we evaluated the effect of EVs on the adhesion of both vaginal beneficial lactobacilli and opportunistic pathogens (i.e., Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Enterococcus faecalis). We demonstrated that EVs from L. crispatus BC5 and L. gasseri BC12 significantly enhanced the cellular adhesion of all tested lactobacilli, reaching the maximum stimulation effect on strains belonging to L. crispatus species (335% and 269% of average adhesion, respectively). At the same time, EVs reduced the adhesion of all tested pathogens, being EVs from L. gasseri BC12 the most efficient. Conclusions: Our observations suggest for the first time that EVs released by symbiotic Lactobacillus strains favor healthy vaginal homeostasis by supporting the colonization of beneficial species and preventing pathogens attachment. This study reinforces the concept of EVs as valid postbiotics and opens the perspective of developing postbiotics from vaginal strains to maintain microbiota homeostasis and promote women’s health

    A global approach for plantar fasciitis with extracorporeal shockwaves treatment

    Get PDF
    Extracorporeal Shockwaves Treatment is considered an effective therapeutic option for plantar fasciitis, but the standard application in the medial insertion of the plantar fascia on the calcaneus has provided ambiguous evidences. In this case, a 63-year man with plantar fasciitis was treated in a 3-session program and Foot and Ankle Outcome Scale and Foot Functional Index questionnaires were chosen for the clinical outcome evaluation. The therapy was focused on the active trigger or myofascial points of the leg, thigh and pelvis in order to return the correct equilibrium of the myofascial system of the whole limb. The patient has already reported an improvement after the second session (FAOS: 76 vs 33, FFI: 85%) which was confirmed in the third one and in the 1-month follow up (FAOS: 79, FFI: 6%) Results suggest that plantar fasciitis may be due to proximal rigidity or tension of the fascia and a global approach using ESWT may have a similar or better outcome respect to the standard application

    Quality control and purification of ready-to-use conjugated gold nanoparticles to ensure effectiveness in biosensing

    Get PDF
    Introduction: Gold nanoparticles (AuNPs) and their conjugates are used for many applications in the field of sensors. Literature lacks procedures able to separate, purify and characterize these species in native conditions without altering them while assuring a high throughput. This technological gap can be reduced by exploiting Asymmetrical Flow Field Flow Fractionation multidetection platforms (AF4 multidetection). Method: This work describes a complete set of strategies based on the AF4 system, from nanoparticle synthesis to separative method optimization to conjugates screening and characterization, achieving quantitative control and purification of ready-to-use conjugated Gold nanoparticles and ensuring effectiveness in biosensing. Results and Discussion: AF4-multidetection was used to study AuNPs with different types of surface coating [Poly ethylene glycol, (PEG) and Citrate], their binding behaviour with protein (Bovine serum albumin, BSA) and their stability after conjugation to BSA. A robust but flexible method was developed, able to be applied to different AuNPs and conjugating molecules. The morphology and conjugation mechanism of AuNPs-BSA conjugates were evaluated by combining online Multiangle light scattering (MALS) and offline Dynamic Light Scattering (DLS) measures, which provided an important feature for the quality control required to optimize bio-probe synthesis and subsequent bioassay

    A thermodynamic study on the interaction between RH-23 peptide and DMPC-based biomembrane models

    Get PDF
    Investigation of the interaction between drugs and biomembrane models, as a strategy to study and eventually improve drug/substrate interactions, is a crucial factor in preliminary screening. Synthesized peptides represent a source of potential anticancer and theragnostic drugs. In this study, we investigated the interaction of a novel synthesized peptide, called RH-23, with a simplified dimyristoylphosphatidylcholine (DMPC) model of the cellular membrane. The interaction of RH-23 with DMPC, organized either in multilamellar vesicles (MLVs) and in Langmuir-Blodgett (LB) monolayers, was assessed using thermodynamic techniques, namely differential scanning calorimetry (DSC) and LB. The calorimetric evaluations showed that RH-23 inserted into MLVs, causing a stabilization of the phospholipid gel phase that increased with the molar fraction of RH-23. Interplay with LB monolayers revealed that RH-23 interacted with DMPC molecules. This work represents the first experimental thermodynamic study on the interaction between RH-23 and a simplified model of the lipid membrane, thus providing a basis for further evaluations of the effect of RH-23 on biological membranes and its therapeutic/diagnostic potential

    Quantum teleportation of a genuine vacuum-one-photon qubit generated via a quantum dot source

    Full text link
    Quantum state teleportation represents a pillar of quantum information and a milestone on the roadmap towards quantum networks with a large number of nodes. Successful photonic demonstrations of this protocol have been carried out employing different qubit encodings. However, demonstrations in the Fock basis encoding are challenging, due to the impossibility of creating a coherent superposition of vacuum-one photon states on a single mode with linear optics. Previous realizations using such an encoding strongly relied on ancillary modes of the electromagnetic field, which only allowed the teleportation of subsystems of entangled states. Here, we enable quantum teleportation of genuine vacuum-one photon states avoiding ancillary modes, by exploiting coherent control of a resonantly excited semiconductor quantum dot in a micro-cavity. Within our setup, we can teleport vacuum-one-photon qubits and perform entanglement swapping in such an encoding. Our results may disclose new potentialities of quantum dot single-photon sources for quantum information applications.Comment: 10 pages, 4 figures + Supplementary Informatio

    FFF-based high-throughput sequence shortlisting to support the development of aptamer-based analytical strategies

    Get PDF
    Aptamers are biomimetic receptors that are increasingly exploited for the development of optical and electrochemical aptasensors. They are selected in vitro by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, but although they are promising recognition elements, for their reliable applicability for analytical purposes, one cannot ignore sample components that cause matrix effects. This particularly applies when different SELEX-selected aptamers and related truncated sequences are available for a certain target, and the choice of the aptamer should be driven by the specific downstream application. In this context, the present work aimed at investigating the potentialities of asymmetrical flow field-flow fractionation (AF4) with UV detection for the development of a screening method of a large number of anti-lysozyme aptamers towards lysozyme, including randomized sequences and an interfering agent (serum albumin). The possibility to work in native conditions and selectively monitor the evolution of untagged aptamer signal as a result of aptamer-protein binding makes the devised method effective as a strategy for shortlisting the most promising aptamers both in terms of affinity and in terms of selectivity, to support subsequent development of aptamer-based analytical devices
    corecore