2,083 research outputs found
A search for gravitational lensing in 38 X-ray selected clusters of galaxies
We present the results of a CCD imaging survey for gravitational lensing in a
sample of 38 X-ray-selected clusters of galaxies. Our sample consists of the
most X-ray luminous (Lx>= 2x10^{44} erg s^{-1}) clusters selected from the
Einstein Observatory Extended Medium Sensitivity Survey (EMSS) that are
observable from Mauna Kea (dec > -40deg). The sample spans a redshift range of
0.15 0.5. CCD images of the
clusters were obtained in excellent seeing. There is evidence of strong
gravitational lensing in the form of giant arcs (length l > 8'', axis ratio l/w
> 10) in 8 of the 38 clusters. Two additional clusters contain shorter arclets,
and 6 more clusters contain candidate arcs that require follow-up observations
to confirm their lensing origin. Since the survey does not have a uniform
surface brightness limit we do not draw any conclusion based on the statistics
of the arcs found. We note, however, that 60% (3 of 5) of the clusters with Lx
> 10^{45} erg s^{-1}, and none of the 15 clusters with Lx < 4x10^{44} erg
s^{-1} contain giant arcs, thereby confirming that high X-ray luminosity does
identify the most massive systems, and thus X-ray selection is the preferred
method for finding true, rich clusters at intermediate and high redshifts. The
observed geometry of the arcs, most of which are thin, have large axis ratios
(l/w > 10), and are aligned orthogonal to the optical major axes of the
clusters, indicate the cluster core mass density profiles must be compact
(steeper than isothermal). In several cases, however, there is also some
evidence, in the form of possible radial arcs, for density profiles with finite
core radii.Comment: Latex file, 17 pages, 7 jpeg figures, to be published in Astronomy
and Astrophysics Supplement
The ROSAT North Ecliptic Pole Survey: The Optical Identifications
The X-ray data around the North Ecliptic Pole (NEP) of the ROSAT All Sky
Survey have been used to construct a contiguous area survey consisting of a
sample of 445 individual X-ray sources above a flux of ~2x10^-14 erg cm^-2 s^-1
in the 0.5-2.0 keV energy band. The NEP survey is centered at RA (2000) = 18h
00m, DEC(2000) = +66deg 33arcmin and covers a region of 80.7 sq. deg at a
moderate Galactic latitude of b = 29.8deg. Hence, the NEP survey is as deep and
covers a comparable solid angle to the ROSAT serendipitous surveys, but is also
contiguous. We have identified 99.6% of the sources and determined redshifts
for the extragalactic objects. In this paper we present the optical
identifications of the NEP catalog of X-ray sources including basic X-ray data
and properties of the sources. We also describe with some detail the optical
identification procedure. The classification of the optical counterparts to the
NEP sources is very similar to that of previous surveys, in particular the
Einstein Extended Medium Sensitivity Survey (EMSS). The main constituents of
the catalog are active galactic nuclei (~49%), either type 1 or type 2
according to the broadness of their permitted emission lines. Stellar
counterparts are the second most common identification class (~34%). Clusters
and groups of galaxies comprise 14%, and BL Lacertae objects 2%. One non-AGN
galaxy, and one planetary nebula have also been found. The NEP catalog of X-ray
sources is a homogeneous sample of astronomical objects featuring complete
optical identification.Comment: Accepted for publication in the ApJS; 33 pages including 12
postscript figures and 3 tables; uses emulateapj.sty. On-line source catalog
at http://www.eso.org/~cmullis/research/nep-catalog.htm
The turbulent flow in a slug: a re-examination
The transition to turbulence in pipe flow proceeds through several distinct stages, eventually producing aggressively expanding regions of fluctuations, ‘slugs’, surrounded by laminar flow. By examining mean-velocity profiles, fluctuating-velocity profiles and Reynolds stress profiles, the seminal study of Wygnanski & Champagne (J. Fluid Mech., vol. 59 (2), 1973, 281–335) concluded that the flow inside slugs is ‘identical’ to fully turbulent flow. Although this conclusion is widely accepted, upon closer examination of their analysis, we find that their data cannot be used to substantiate this conclusion. We resolve this conflict via new experiments and simulations wherein we pair slugs and fully turbulent flow at the same value of Reynolds number (Re). We conclude that the flow inside a slug is indeed indistinguishable from a fully turbulent flow but only when the two flows share the same value of Re. Our work highlights the rich Re-dependence of transitional pipe flows
The North Ecliptic Pole Supercluster
We have used the ROSAT All-Sky Survey to detect a known supercluster at
z=0.087 in the North Ecliptic Pole region. The X-ray data greatly improve our
understanding of this supercluster's characteristics, approximately doubling
our knowledge of the structure's spatial extent and tripling the cluster/group
membership compared to the optical discovery data. The supercluster is a rich
structure consisting of at least 21 galaxy clusters and groups, 12 AGN, 61 IRAS
galaxies, and various other objects. A majority of these components were
discovered with the X-ray data, but the supercluster is also robustly detected
in optical, IR, and UV wavebands. Extending 129 x 102 x 67 (1/h50 Mpc)^3, the
North Ecliptic Pole Supercluster has a flattened shape oriented nearly edge-on
to our line-of-sight. Owing to the softness of the ROSAT X-ray passband and the
deep exposure over a large solid angle, we have detected for the first time a
significant population of X-ray emitting galaxy groups in a supercluster. These
results demonstrate the effectiveness of X-ray observations with contiguous
coverage for studying structure in the Universe.Comment: Accepted for publication in The Astrophysical Journal; 5 pages with 2
embedded figures; uses emulateapj.sty; For associated animations, see
http://www.ifa.hawaii.edu/~mullis/nep3d.html; A high-resolution color
postscript version of the full paper is available at
http://www.ifa.hawaii.edu/~mullis/papers/nepsc.ps.g
Macroscopic effects of the spectral structure in turbulent flows
Two aspects of turbulent flows have been the subject of extensive, split
research efforts: macroscopic properties, such as the frictional drag
experienced by a flow past a wall, and the turbulent spectrum. The turbulent
spectrum may be said to represent the fabric of a turbulent state; in practice
it is a power law of exponent \alpha (the "spectral exponent") that gives the
revolving velocity of a turbulent fluctuation (or "eddy") of size s as a
function of s. The link, if any, between macroscopic properties and the
turbulent spectrum remains missing. Might it be found by contrasting the
frictional drag in flows with differing types of spectra? Here we perform
unprecedented measurements of the frictional drag in soap-film flows, where the
spectral exponent \alpha = 3 and compare the results with the frictional drag
in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of
the Reynolds number Re (a measure of the strength of the turbulence), we find
that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in
pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may
be predicted from the attendant value of \alpha by using a new theory, in which
the frictional drag is explicitly linked to the turbulent spectrum. Our work
indicates that in turbulence, as in continuous phase transitions, macroscopic
properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure
Two-phase densification of cohesive granular aggregates
When poured into a container, cohesive granular materials form low-density,
open granular aggregates. If pressed upon with a ram, these aggregates densify
by particle rearrangement. Here we introduce experimental evidence to the
effect that particle rearrangement is a spatially heterogeneous phenomenon,
which occurs in the form of a phase transformation between two configurational
phases of the granular aggregate. We then show that the energy landscape
associated with particle rearrangement is consistent with our interpretation of
the experimental results. Besides affording insight into the physics of the
granular state, our conclusions are relevant to many engineering processes and
natural phenomena.Comment: 7 pages, 3 figure
- …