34 research outputs found

    Production of vegetable oil blends and structured lipids and their effect on wound healing

    Get PDF
    ;Duas misturas de óleos vegetais (girassol/canola 85/15 (BL1) e canola/linhaça, 70/30 (BL2) foram preparadas e interesterificadas por via enzimática para serem aplicadas em feridas induzidas cirurgicamente em ratos. Após a cirurgia, os animais foram submetidos ao tratamento com soro fisiológico (TPS) (grupo controle), tratamento com as misturas (TBL) e tratamento com os lipídios estruturados (TSL). O grupo controle (TPS) recebeu soro fisiológico por 15 dias. Em TBL, BL1 foi administrada durante a fase de inflamação (dias 0-3) e BL2 na fase de formação de tecido e remodelação (dias 4-15). Em TSL, os lipídios estruturados SL1 e SL2 foram usados em vez de BL1 e BL2, respectivamente. O objetivo deste estudo foi avaliar a evolução do fechamento das feridas dos grupos de ratos tratados com as misturas ou lipídios estruturados em comparação com os ratos do grupo controle, tratados com soro fisiológico. O processo de cicatrização das feridas foi avaliado através da medição das áreas das feridas ao longo dos tratamentos e pela determinação das concentrações de citocinas. Observou-se aumento das áreas das feridas tratadas com as misturas e os lipídios estruturados na fase inflamatória, seguida por um fechamento acentuado de feridas comparado com o tratamento com solução salina. As mudanças observadas durante a fase inflamatória sugerem uma potencial aplicação terapêutica na cicatrização de feridas cutâneas, fazendo-se necessárias investigações posteriores.;;Two oil blends (sunflower/canola oils 85/15 (BL1) and canola/linseed oils 70/30 (BL2)), were prepared and enzymatically interesterified to be applied to surgically-induced wounds in rats. Following surgery, the animals were submitted to the Treatment with Physiological Saline (TPS) (control group), Blends (TBL), and Structured Lipids (TSL). The control group (TPS) received physiological saline solution for 15 days. In TBL, BL1 was administered during the inflammation phase (days 0-3) and BL2 in the tissue formation and remodeling phase (days 4-15). In TSL, Structured Lipid 1 (SL1) and Structured Lipid 2 (SL2) were used instead of BL1 and BL2, respectively. The aim of this study was to compare wound closure evolution among rats treated with the blends or structured lipids versus control rats treated with physiological saline. The wound healing process was evaluated by measuring the wound areas along the treatments and the concentrations of cytokines. An increase in the areas of wounds treated with the blends and structured lipids in the inflammatory phase was observed, followed by a steeper closure curve compared to wounds treated with physiological saline. The changes observed during the inflammatory phase suggest a potential therapeutic application in cutaneous wound healing which should be further investigated.

    Production of vegetable oil blends and structured lipids and their effect on wound healing

    Get PDF
    Two oil blends (sunflower/canola oils 85/15 (BL1) and canola/linseed oils 70/30 (BL2)), were prepared and enzymatically interesterified to be applied to surgically-induced wounds in rats. Following surgery, the animals were submitted to the Treatment with Physiological Saline (TPS) (control group), Blends (TBL), and Structured Lipids (TSL). The control group (TPS) received physiological saline solution for 15 days. In TBL, BL1 was administered during the inflammation phase (days 0-3) and BL2 in the tissue formation and remodeling phase (days 4-15). In TSL, Structured Lipid 1 (SL1) and Structured Lipid 2 (SL2) were used instead of BL1 and BL2, respectively. The aim of this study was to compare wound closure evolution among rats treated with the blends or structured lipids versus control rats treated with physiological saline. The wound healing process was evaluated by measuring the wound areas along the treatments and the concentrations of cytokines. An increase in the areas of wounds treated with the blends and structured lipids in the inflammatory phase was observed, followed by a steeper closure curve compared to wounds treated with physiological saline. The changes observed during the inflammatory phase suggest a potential therapeutic application in cutaneous wound healing which should be further investigated.512415427CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoDuas misturas de óleos vegetais (girassol/canola 85/15 (BL1) e canola/linhaça, 70/30 (BL2) foram preparadas e interesterificadas por via enzimática para serem aplicadas em feridas induzidas cirurgicamente em ratos. Após a cirurgia, os animais foram submetidos ao tratamento com soro fisiológico (TPS) (grupo controle), tratamento com as misturas (TBL) e tratamento com os lipídios estruturados (TSL). O grupo controle (TPS) recebeu soro fisiológico por 15 dias. Em TBL, BL1 foi administrada durante a fase de inflamação (dias 0-3) e BL2 na fase de formação de tecido e remodelação (dias 4-15). Em TSL, os lipídios estruturados SL1 e SL2 foram usados em vez de BL1 e BL2, respectivamente. O objetivo deste estudo foi avaliar a evolução do fechamento das feridas dos grupos de ratos tratados com as misturas ou lipídios estruturados em comparação com os ratos do grupo controle, tratados com soro fisiológico. O processo de cicatrização das feridas foi avaliado através da medição das áreas das feridas ao longo dos tratamentos e pela determinação das concentrações de citocinas. Observou-se aumento das áreas das feridas tratadas com as misturas e os lipídios estruturados na fase inflamatória, seguida por um fechamento acentuado de feridas comparado com o tratamento com solução salina. As mudanças observadas durante a fase inflamatória sugerem uma potencial aplicação terapêutica na cicatrização de feridas cutâneas, fazendo-se necessárias investigações posteriores

    Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Get PDF
    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001). Fat-1 mice had lower soleus muscle dry mass loss (by 10%) and preserved absolute isotonic force (by 17%) and CSA of the soleus muscle (by 28%) after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70%) and MuRF-1 content decreased (by 50%) in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition

    Production of vegetable oil blends and structured lipids and their effect on wound healing

    Get PDF
    Two oil blends (sunflower/canola oils 85/15 (BL1) and canola/linseed oils 70/30 (BL2)), were prepared and enzymatically interesterified to be applied to surgically-induced wounds in rats. Following surgery, the animals were submitted to the Treatment with Physiological Saline (TPS) (control group), Blends (TBL), and Structured Lipids (TSL). The control group (TPS) received physiological saline solution for 15 days. In TBL, BL1 was administered during the inflammation phase (days 0-3) and BL2 in the tissue formation and remodeling phase (days 4-15). In TSL, Structured Lipid 1 (SL1) and Structured Lipid 2 (SL2) were used instead of BL1 and BL2, respectively. The aim of this study was to compare wound closure evolution among rats treated with the blends or structured lipids versus control rats treated with physiological saline. The wound healing process was evaluated by measuring the wound areas along the treatments and the concentrations of cytokines. An increase in the areas of wounds treated with the blends and structured lipids in the inflammatory phase was observed, followed by a steeper closure curve compared to wounds treated with physiological saline. The changes observed during the inflammatory phase suggest a potential therapeutic application in cutaneous wound healing which should be further investigated.</p

    FGF2 species of 18 and 22.5 kDa: paracrine molecular signaling and biological functions

    No full text
    FGF2 (Fibroblast Growth Factor 2), o fundador da família FGF, tem funções regulatórias na mitogênese, diferenciação, morfogênese e reparo tecidual. Diversas espécies moleculares de FGF2 compartilham uma seqüência C-terminal comum de 155 aminoácidos, pois se originam de diferentes sítios de iniciação de leitura de um único mRNA. O menor, o FGF2-18kDa, é liberado extracelularmente para se ligar a receptores específicos (FGFRs) para disparar as funções parácrinas e autócrinas pelas quais este fator é conhecido. Por outro lado, as espécies maiores (FGF2-21, 22, 22,5 e 34kDa) são intracelulares se ligam a parceiros moleculares desconhecidos para exercer funções intrácrinas ainda indefinidas. O objetivo desta tese foi produzir espécies recombinantes do FGF2-18 e FGF2-22,5, na forma de proteínas de fusão, para analisar funções biológicas e mecanismos de sinalização. Nas células malignas Y1 de camundongo, os recombinantes de FGF2-18kDa (FGF2-18, His-FGF2-18 e His-FGF2-18-ProA) dispararam uma resposta antagônica estimulando as vias de sinalização mitogênica, mas bloqueando o ciclo celular. Nos fibroblastos não tumorigênicos Balb3T3, estes mesmos recombinantes de FGF2-18kDa dispararam apenas a resposta mitogênica clássica. Todos os efeitos biológicos destes recombinantes de FGF2-18kDa foram bloqueados pelo inibidor específico da proteína quinase de tirosina dos FGFRs, PD173074, demonstrando que são respostas intermediadas pelos FGFRs. Portanto, os domínios estruturais adicionados aos recombinantes de FGF2-18kDa não impediram que estas proteínas se ligassem e ativassem os FGFRs. Por outro lado, o recombinante His-FGF2-22,5 dispara apenas as vias de sinalização mitogênica em ambas as células Y1 e 3T3, mas este efeito biológico não é inibido por PD173074. Estes resultados sugerem que a seqüência N-terminal de 55 resíduos, rica em aminoácidos básicos, impede que o FGF2-22,5kDa se ligue e/ou ative os FGFRs. Entretanto, o recombinante His-FGF2-22,5ProA dispara a resposta antagônica característica do FGF2-18kDa. As implicações destes últimos resultados é que o domínio de ProA adicionado ao C-terminal torna o FGF2-22,5kDa um bom ligante dos FGFRs. A interação física entre ligante e receptor das formas recombinantes His-FGF2-18kDa (ou His-FGF2-18ProA) e FGF2-22,5kDa com os putativos FGFRs foi analisada através da técnica de SPR e os resultados mostram KDs aproximados (Kd18=21, 488.10-9 e Kd22,5=20,70393.10-9), enquanto que o número de sítios ligantes em vesículas microssomais das células é significantemente inferior para o FGF2-22,5kDa. Estes resultados são compatíveis com a existência de receptores diferentes para FGF2-18kDa e FGF2-22,5kDa, uma hipótese ainda a ser definitivamente corroborada. Em conclusão, o FGF2-18kDa, mesmo em formas recombinantes como proteína de fusão, dispara todos os efeitos biológicos descritos para FGF2, através dos FGFRs. Diferentemente, o FGF2-22,5kDa, como fator parácrino, só desencadeou a resposta mitogênica clássica de FGF2, provavelmente através de receptores diferentes dos FGFRs. Os resultados e conclusões desta tese têm um potencial indiscutivelmente relevante para a biologia molecular do câncer, com implicações possíveis em terapia oncológicaFGF2 (Fibroblast Growth Factor 2), the founder of the FGF family, has regulatory functions in mitogenesis, differentiation, morphogenesis and tissue repair. Multiple FGF2 molecular species, sharing a C-terminal sequence of 155 amino acids, are translated from different iniciation sites of the same mRNA. The smaller, the FGF2-18kD, is extracellularly released to bind to specific membrane receptors (FGFRs), performing paracrine and autocrine functions. On the other hand, the larger FGF2s (21, 22, 22.5 and 34kDa) are intracellular species that bind to unknown partners to play still undefined intracrine roles. The aim of this thesis was to produce recombinant species of FGF2-18kDa and FGF2-22,5kDa, in the form of fusion proteins, to analyze functions and signaling mechanisms. In mouse Y1 malignant cells, FGF2-18kD recombinants (FGF2-18kDa and His-FGF2-18kDaProA) triggered an antagonistic response activating mitogenic signaling pathways, but blocking the cell cycle. However, in non tumorigenic Balb3T3 fibroblasts, these same FGF2-18kD recombinants only elicited the classical mitogenic response. All biological effects of these FGF2-18kD recombinants were blocked by the specific inhibitor of FGFR-protein-tyrosine-kinases, PD173074, demonstrating that these responses are mediated by FGFRs. Therefore, the new peptide domains added to FGF2-18kD did not prevent these recombinant fusion proteins to bind and activate FGFRs. Conversely, the recombinant His-FGF2-22,5kDa triggered only mitogenic signaling pathways in both Y1 and Balb3T3 cells, a biological effect not inhibited by PD173074. These results suggested that the additional basic-rich N-terminal sequence of 55 amino acid residues, found in FGF2-22,5kDa, prevents this FGF2 species from binding and / or activate FGFRs. However, surprisingly, the recombinant His-FGF2-22kDaProA triggered the antagonistic response characteristic of FGF2-18kDa. These results imply that the ProA-domain added to the C-terminal end rendered the FGF2-22,5kDaProA a good ligand of FGFRs. The physical interaction between recombinants of both His-FGF2-18kD and His-FGF2-22kDa with putative FGFRs, analyzed by SPR, yielded close KD values (KD18=21, 5.10-9 e K D22,5=20,7.10-9), while the number of binding sites in cell microsomal vesicles were significantly lower for the His-FGF2-22,5kDa. These results are consistent with the existence of different receptors for FGF2 and FGF2-18kD-22,5kDa, a hypothesis that has yet to be definitively confirmed. In conclusion, FGF2-18kD, even as recombinant fusion proteins, triggered all biological effects of FGF2, through FGFRs. Conversely, the FGF2-22, 5kDa only triggered the classical mitogenic response, probably via receptors other than FGFRs. The results and conclusions of this thesis are potentially of great interest in cancer molecular biology, with implications in oncologic therapy

    Topical anti-inflammatory activity of palmitoleic acid improves wound healing.

    No full text
    This study investigated the effects of palmitoleic acid on different phases of the healing process. Macroscopic analyses were performed on wounds in rats with or without palmitoleic acid treatment, and the results showed that palmitoleic acid directly hastened wound closure. The topical treatment of wounds with palmitoleic acid resulted in smaller wounds than those observed in the control group. The anti-inflammatory activity of palmitoleic acid may be responsible for healing, especially in the stages of granulation tissue formation and remodelling. Palmitoleic acid modified TNF-α, IL-1β, IL-6, CINC-2α/β, MIP-3α and VEGF-α profiles at the wound site 24, 48, 120, 216 and 288 hours post-wounding. Assays assessing neutrophil migration and exudate formation in sterile inflammatory air pouches revealed that palmitoleic acid had potent anti-inflammatory activity, inhibiting the LPS-induced release of TNF-α (73.14%, p≤0.05), IL-1β (66.19%, p≤0.001), IL-6 (75.19%, p≤0.001), MIP-3α (70.38%, p≤0.05), and l-selectin (16%, p≤0.05). Palmitoleic acid also inhibited LPS-stimulated neutrophil migration. We concluded that palmitoleic acid accelerates wound healing via an anti-inflammatory effect

    Dexamethasone programs lower fatty acid absorption and reduced PPAR-γ and fat/CD36 expression in the jejunum of the adult rat offspring

    No full text
    The progeny of rats born and breastfed by mothers receiving dexamethasone (DEX) during pregnancy exhibits permanent reduction in body weight and adiposity but the precise mechanisms related to this programming are not fully understood. In order to clarify this issue, the present study investigated key aspects of lipoprotein production and lipid metabolism by the liver and the intestine that would explain the reduced adiposity seen in the adult offspring exposed to DEX in utero. Female Wistar rats were treated with DEX (0.1 mg/kg/day) between the 15th and the 21st days of pregnancy, while control mothers were treated with vehicle. Male offspring born to control mothers were nursed by either adoptive control mothers (CTL/CTL) or DEX-treated mothers (CTL/DEX). Male offspring born to DEX-treated mothers were nursed by either control mothers (DEX/CTL) or adoptive DEX-treated mothers (DEX/DEX). We found that only the male DEX/DEX offspring had reduced adiposity. Additionally, male DEX/DEX progeny had lower circulating triacylglycerol (TAG) levels only in fed-state. The four groups of offspring presented similar energy expenditure, respiratory quotient and very low-density lipoprotein (VLDL) production. On the other hand, DEX/DEX rats displayed reduced TAG levels after gavage with olive oil and reduced expression of fatty acid translocase Cd36 (Fat/Cd36) and peroxisome proliferator-activated receptor γ (Pparg) in the jejunum. Altogether, our study supports the notion that reduced fat absorption by the jejunum may contribute to the lower adiposity of the adult offspring born and breastfed by mothers treated with DEX during pregnancy265CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPnão temnão tem2013/07607-8; 2015/23285-6; 2016/13138-9; 2019/03196-0; 2019/19488-0; 2020/06397-

    Production of vegetable oil blends and structured lipids and their effect on wound healing

    No full text
    Two oil blends (sunflower/canola oils 85/15 (BL1) and canola/linseed oils 70/30 (BL2)), were prepared and enzymatically interesterified to be applied to surgically-induced wounds in rats. Following surgery, the animals were submitted to the Treatment with Physiological Saline (TPS) (control group), Blends (TBL), and Structured Lipids (TSL). The control group (TPS) received physiological saline solution for 15 days. In TBL, BL1 was administered during the inflammation phase (days 0-3) and BL2 in the tissue formation and remodeling phase (days 4-15). In TSL, Structured Lipid 1 (SL1) and Structured Lipid 2 (SL2) were used instead of BL1 and BL2, respectively. The aim of this study was to compare wound closure evolution among rats treated with the blends or structured lipids versus control rats treated with physiological saline. The wound healing process was evaluated by measuring the wound areas along the treatments and the concentrations of cytokines. An increase in the areas of wounds treated with the blends and structured lipids in the inflammatory phase was observed, followed by a steeper closure curve compared to wounds treated with physiological saline. The changes observed during the inflammatory phase suggest a potential therapeutic application in cutaneous wound healing which should be further investigated.</p

    Changes in Skeletal Muscle Protein Metabolism Signaling Induced by Glutamine Supplementation and Exercise

    No full text
    Aim: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. Methods: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. Results: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. Conclusion: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported
    corecore