3 research outputs found
Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations
Ras of complex proteins (Roc) is a Ras-like GTP binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain, and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labeling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains, that in contrast are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-Kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis, and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum RocCOR interface significantly influence the structure and nucleotide-induced conformational changes of the Roc domains
Sequential defects in cardiac lineage commitment and maturation cause hypoplastic left heart syndrome
BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/ maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches