1,108 research outputs found
Solving the subset-sum problem with a light-based device
We propose a special computational device which uses light rays for solving
the subset-sum problem. The device has a graph-like representation and the
light is traversing it by following the routes given by the connections between
nodes. The nodes are connected by arcs in a special way which lets us to
generate all possible subsets of the given set. To each arc we assign either a
number from the given set or a predefined constant. When the light is passing
through an arc it is delayed by the amount of time indicated by the number
placed in that arc. At the destination node we will check if there is a ray
whose total delay is equal to the target value of the subset sum problem (plus
some constants).Comment: 14 pages, 6 figures, Natural Computing, 200
Aerothermodynamic Analysis of a Reentry Brazilian Satellite
This work deals with a computational investigation on the small ballistic
reentry Brazilian vehicle SARA (acronyms for SAt\'elite de Reentrada
Atmosf\'erica). Hypersonic flows over the vehicle SARA at zero-degree angle of
attack in a chemical equilibrium and thermal non-equilibrium are modeled by the
Direct Simulation Monte Carlo (DSMC) method, which has become the main
technique for studying complex multidimensional rarefied flows, and that
properly accounts for the non-equilibrium aspects of the flows. The emphasis of
this paper is to examine the behavior of the primary properties during the high
altitude portion of SARA reentry. In this way, velocity, density, pressure and
temperature field are investigated for altitudes of 100, 95, 90, 85 and 80 km.
In addition, comparisons based on geometry are made between axisymmetric and
planar two-dimensional configurations. Some significant differences between
these configurations were noted on the flowfield structure in the reentry
trajectory. The analysis showed that the flow disturbances have different
influence on velocity, density, pressure and temperature along the stagnation
streamline ahead of the capsule nose. It was found that the stagnation region
is a thermally stressed zone. It was also found that the stagnation region is a
zone of strong compression, high wall pressure. Wall pressure distributions are
compared with those of available experimental data and good agreement is found
along the spherical nose for the altitude range investigated.Comment: The paper will be published in Vol. 42 of the Brazilian Journal of
Physic
Reconfiguration of Cliques in a Graph
We study reconfiguration problems for cliques in a graph, which determine
whether there exists a sequence of cliques that transforms a given clique into
another one in a step-by-step fashion. As one step of a transformation, we
consider three different types of rules, which are defined and studied in
reconfiguration problems for independent sets. We first prove that all the
three rules are equivalent in cliques. We then show that the problems are
PSPACE-complete for perfect graphs, while we give polynomial-time algorithms
for several classes of graphs, such as even-hole-free graphs and cographs. In
particular, the shortest variant, which computes the shortest length of a
desired sequence, can be solved in polynomial time for chordal graphs,
bipartite graphs, planar graphs, and bounded treewidth graphs
Lung function in adults born preterm
Very preterm birth, before the gestational age (GA) of 32 weeks,
increases the risk of obstructed airflow in adulthood. We examined
whether all preterm births (GA<37 weeks) are associated with poorer
adult lung function and whether any associations are explained by
maternal, early life/neonatal, or current life factors. Participants of
the ESTER Preterm Birth Study, born between 1985 and 1989 (during the
pre-surfactant era), at the age of 23 years participated in a clinical
study in which they performed spirometry and provided detailed medical
history. Of the participants, 139 were born early preterm (GA<34
weeks), 239 late preterm (GA: 34-<37 weeks), and 341 full-term (GA≥37
weeks). Preterm birth was associated with poorer lung function. Mean
differences between individuals born early preterm versus full-term were
-0.23 standard deviation (SD) (95% confidence interval (CI): -0.40,
-0.05)) for forced vital capacity z-score (zFVC), -0.44 SD (95% CI
-0.64, -0.25) for forced expiratory volume z-score (zFEV1), and -0.29 SD
(95% CI -0.47, -0.10) for zFEV1/FVC. For late preterm, mean differences
with full-term controls were -0.02 SD (95% CI -0.17, 0.13), -0.12 SD
(95% CI -0.29, 0.04) and -0.13 SD (95% CI -0.29, 0.02) for zFVC, zFEV1,
and zFEV1/FVC, respectively. Examination of finer GA subgroups suggested
an inverse non-linear association between lung function and GA, with
the greatest impact on zFEV1 for those born extremely preterm. The
subgroup means were GA<28 weeks: -0.98 SD; 28-<32 weeks: -0.29 SD;
32-<34 weeks: -0.44 SD; 34-<36 weeks: -0.10 SD; 36-<37weeks:
-0.11 SD; term-born controls (≥37weeks): 0.02 SD. Corresponding means
for zFEV1/FVC were -1.79, -0.44, -0.47, -0.48, -0.29, and -0.02.
Adjustment for maternal pregnancy conditions and socioeconomic and
lifestyle factors had no major impact on the relationship. Preterm birth
is associated with airflow limitation in adult life. The association
appears to be attributable predominantly to those born most immature,
with only a modest decrease among those born preterm at later
gestational ages.</p
Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis
Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions
Statistical estimates of absenteeism attributable to seasonal and pandemic influenza from the Canadian Labour Force Survey
<p>Abstract</p> <p>Background</p> <p>As many respiratory viruses are responsible for influenza like symptoms, accurate measures of the disease burden are not available and estimates are generally based on statistical methods. The objective of this study was to estimate absenteeism rates and hours lost due to seasonal influenza and compare these estimates with estimates of absenteeism attributable to the two H1N1 pandemic waves that occurred in 2009.</p> <p>Methods</p> <p>Key absenteeism variables were extracted from Statistics Canada's monthly labour force survey (LFS). Absenteeism and the proportion of hours lost due to own illness or disability were modelled as a function of trend, seasonality and proxy variables for influenza activity from 1998 to 2009.</p> <p>Results</p> <p>Hours lost due to the H1N1/09 pandemic strain were elevated compared to seasonal influenza, accounting for a loss of 0.2% of potential hours worked annually. In comparison, an estimated 0.08% of hours worked annually were lost due to seasonal influenza illnesses. Absenteeism rates due to influenza were estimated at 12% per year for seasonal influenza over the 1997/98 to 2008/09 seasons, and 13% for the two H1N1/09 pandemic waves. Employees who took time off due to a seasonal influenza infection took an average of 14 hours off. For the pandemic strain, the average absence was 25 hours.</p> <p>Conclusions</p> <p>This study confirms that absenteeism due to seasonal influenza has typically ranged from 5% to 20%, with higher rates associated with multiple circulating strains. Absenteeism rates for the 2009 pandemic were similar to those occurring for seasonal influenza. Employees took more time off due to the pandemic strain than was typical for seasonal influenza.</p
Decreased Autocrine EGFR Signaling in Metastatic Breast Cancer Cells Inhibits Tumor Growth in Bone and Mammary Fat Pad
Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland
Development Trends of White Matter Connectivity in the First Years of Life
The human brain is organized into a collection of interacting networks with specialized functions to support various cognitive functions. Recent research has reached a consensus that the brain manifests small-world topology, which implicates both global and local efficiency at minimal wiring costs, and also modular organization, which indicates functional segregation and specialization. However, the important questions of how and when the small-world topology and modular organization come into existence remain largely unanswered. Taking a graph theoretic approach, we attempt to shed light on this matter by an in vivo study, using diffusion tensor imaging based fiber tractography, on 39 healthy pediatric subjects with longitudinal data collected at average ages of 2 weeks, 1 year, and 2 years. Our results indicate that the small-world architecture exists at birth with efficiency that increases in later stages of development. In addition, we found that the networks are broad scale in nature, signifying the existence of pivotal connection hubs and resilience of the brain network to random and targeted attacks. We also observed, with development, that the brain network seems to evolve progressively from a local, predominantly proximity based, connectivity pattern to a more distributed, predominantly functional based, connectivity pattern. These observations suggest that the brain in the early years of life has relatively efficient systems that may solve similar information processing problems, but in divergent ways
- …