6,112 research outputs found

    Inhibition of oncogenic transcription factor REL by the natural product derivative calafianin monomer 101 induces proliferation arrest and apoptosis in human B-lymphoma cell lines

    Get PDF
    Increased activity of transcription factor NF-ÎșB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-ÎșB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-ÎșB subunits REL (human c-Rel) and p65 as compared to NF-ÎșB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-ÎșB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-ÎșB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.R01 GM094551 - NIGMS NIH HHS; P50 GM067041 - NIGMS NIH HHS; GM094551 - NIGMS NIH HHS; R24 GM111625 - NIGMS NIH HHS; GM067041 - NIGMS NIH HH

    Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-ÎșB signal transduction, and development

    Full text link
    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-ÎșB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-ÎșB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-ÎșB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-ÎșB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.IOS-1354935 - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); 1262934 - National Science Foundation (NSF); 2014-BSP - Arnold and Mabel Beckman Foundatio

    Remote participation during glycosylation reactions of galactose building blocks: Direct evidence from cryogenic vibrational spectroscopy

    Get PDF
    The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds

    CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein

    Get PDF
    The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-ÎșB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-ÎșB signaling in response to treatment with tumor necrosis factor. Nevertheless, noncanonical NF-ÎșB signaling is intact in these NEMO-deficient cells. Expression of ectopic wildtype NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-ÎșB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell typespecific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-ÎșB signaling are discussed.Published versio

    An innate ability: how do basal invertebrates manage their chronic exposure to microbes?

    Get PDF
    Homologs of mammalian innate immune sensing and downstream pathway proteins have been discovered in a variety of basal invertebrates, including cnidarians and sponges, as well as some single-celled protists. Although the structures of these proteins vary among the basal organisms, many of the activities found in their mammalian counterparts are conserved. This is especially true for the Toll-like receptor (TLR) and cGAS-STING pathways that lead to downstream activation of transcription factor NF-ÎșB. In this short perspective, we describe the evidence that TLR and cGAS-STING signaling to NF-ÎșB is also involved in immunity in basal animals, as well as in the maintenance of microbial symbionts. Different from terrestrial animals, immunity in many marine invertebrates might have a constitutively active state (to protect against continual exposure to resident or waterborne microbes), as well as a hyperactive state that can be induced by pathogens at both transcriptional and posttranscriptional levels. Research on basal immunity may be important for (1) understanding different approaches that organisms take to sensing and protecting against microbes, as well as in maintaining microbial symbionts; (2) the identification of novel antimicrobial effector genes and processes; and (3) the molecular pathways that are being altered in basal marine invertebrates in the face of the effects of a changing environment.IOS-1937650 - National Science FoundationPublished versio

    Late Decaying Dark Matter, Bulk Viscosity and the Cosmic Acceleration

    Full text link
    We discuss a cosmology in which cold dark matter begins to decay into relativistic particles at a recent epoch (z < 1). We show that the large entropy production and associated bulk viscosity from such decays leads to an accelerating cosmology as required by observations. We investigate the effects of decaying cold dark matter in a Lambda = 0, flat, initially matter dominated cosmology. We show that this model satisfies the cosmological constraint from the redshift-distance relation for type Ia supernovae. The age in such models is also consistent with the constraints from the oldest stars and globular clusters. Possible candidates for this late decaying dark matter are suggested along with additional observational tests of this cosmological paradigm.Comment: 8 pages, 3 figures, 1 tabl

    Current directions and future perspectives from the third Nematostella research conference

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Zoology 118 (2015): 135-140, doi:10.1016/j.zool.2014.06.005.The third Nematostella vectensis Research Conference took place in December 2013 in Eilat, Israel, as a satellite to the 8th International Conference on Coelenterate Biology. The starlet sea anemone, Nematostella vectensis, has emerged as a powerful cnidarian model, in large part due to the extensive genomic and transcriptomic resources and molecular approaches that are becoming available for Nematostella, which were the focus of several presentations. In addition, research was presented highlighting the broader utility of this species for studies of development, circadian rhythms, signal transduction, and gene–environment interactions.Research in the authors’ laboratories on Nematostella is supported by National Science Foundation grants MCB-1057354 to A.M.T. and MCB-0924749 to T.D.G. Travel support for the meeting was provided to T.D.G. by Illumina, Inc. (San Diego, CA, USA), to A.M.R. by the University of North Carolina at Charlotte, and to A.M.T. by the Israel–US Binational Science Foundation (Jerusalem, Israel)

    Scaffold proteins as dynamic integrators of biological processes

    Get PDF
    5R01GM117350-04 - NIH/National Institute of General Medical SciencesPublished versio
    • 

    corecore