124 research outputs found

    Novel sources of Flavor Changed Neutral Currents in the 331RHN331_{RHN} model

    Full text link
    Sources of Flavor Changed Neutral Currents (FCNC) naturally emerge from a well motivated framework called 3-3-1 with right-handed neutrinos model, 331RHN331_{RHN} for short, mediated by an extra neutral gauge boson ZZ^{\prime}. Following previous works we calculate these sources and in addition we derive new ones coming from CP-even and -odd neutral scalars which appear due to their non-diagonal interactions with the physical standard quarks. Furthermore we show that bounds related to the neutral mesons systems KLKSK_L-K_S and D10D20D_1^0 - D_2^0 may be significantly strengthened in the presence of these new interactions allowing us to infer stronger constraints on the parameter space of the model.Comment: Published version. 10 pages, 6 figure

    Ward Identities, B-> \rho Form Factors and |V_ub|

    Full text link
    The exclusive FCNC beauty semileptonic decay B-> \rho is studied using Ward identities in a general vector meson dominance framework, predicting vector meson couplings involved. The long distance contributions are discussed which results to obtain form factors and |V_ub|. A detailed comparison is given with other approaches.Comment: 30 pages+four postscript figures, an Appendix adde

    Yukawa matrices from a spontaneously broken abelian symmetry

    Get PDF
    We classify all the phenomenologically viable fermion mass matrices coming from a spontaneously broken abelian symmetry U(1)X, U(1)_X, with one and two additional chiral fields of opposite charges X=±1. X=\pm 1. We find that the non-trivial K\"ahler metric can fill zeroes of the fermion mass matrices up to phenomenologically interesting values. A general anomaly analysis shows that for one additional chiral field the only way to achieve anomaly cancellation is by use of the Green-Schwarz mechanism. For two additional fields with X=±1X=\pm 1 and negative charge differences in the lepton sector the anomalies can however be directly put to zero. This case gives a unique prediction for the ratio of the two Higgs scalars of MSSM, tgβmtmb(sinθc)2{\rm tg} \beta \sim { m_t \over m_b} (sin \theta_c)^ 2, where θc\theta_c is the Cabibbo angle.Comment: 16 pages, tex, no figure

    Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    Get PDF
    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    Sum Rules for Radiative and Strong Decays of Heavy Mesons

    Full text link
    We derive two model-independent sum rules relating the transition matrix elements for radiative and strong decays of excited heavy mesons to properties of the lowest-lying heavy mesons. The sum rule for the radiative decays is an analog of the Cabibbo-Radicati sum rule and expresses the sum of the radiative widths in terms of the isovector charge radius of the ground state heavy meson. Using model-dependent estimates and heavy hadron chiral perturbation theory calculations, we show that this sum rule is close to saturation with states of excitation energies less than 1 GeV. An analog of the Adler-Weisberger sum rule gives an useful sum rule for the pionic widths of heavy excited mesons, which is used to set a model-independent upper bound on the coupling of the P-wave heavy mesons.Comment: 12 pages, REVTe

    An Upgraded Analysis of ϵ/ϵ\epsilon\prime/\epsilon at the Next-to-Leading Order

    Full text link
    An upgraded analysis of \ep, xdx_d and \epp/\ep, using the latest determinations of the relevant experimental and theoretical parameters, is presented. Using the recent determination of the top quark mass, mt=(174±17)m_t=(174 \pm 17) GeV, our best estimate is \epp/\ep= 3.1 \pm 2.5 , which lies in the range given by E731. We describe our determination of \epp/\ep and make a comparison with other similar studies. A detailed discussion of the matching of the full theory to the effective Hamiltonian, written in terms of lattice operators, is also given.Comment: LaTeX, 45 pages, 6 postscript figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    corecore