1 research outputs found
A Compact Cold-Atom Interferometer with a High Data-Rate Grating Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser System
The extreme miniaturization of a cold-atom interferometer accelerometer
requires the development of novel technologies and architectures for the
interferometer subsystems. Here we describe several component technologies and
a laser system architecture to enable a path to such miniaturization. We
developed a custom, compact titanium vacuum package containing a
microfabricated grating chip for a tetrahedral grating magneto-optical trap
(GMOT) using a single cooling beam. In addition, we designed a multi-channel
photonic-integrated-circuit-compatible laser system implemented with a single
seed laser and single sideband modulators in a time-multiplexed manner,
reducing the number of optical channels connected to the sensor head. In a
compact sensor head containing the vacuum package, sub-Doppler cooling in the
GMOT produces 15 uK temperatures, and the GMOT can operate at a 20 Hz data
rate. We validated the atomic coherence with Ramsey interferometry using
microwave spectroscopy, then demonstrated a light-pulse atom interferometer in
a gravimeter configuration for a 10 Hz measurement data rate and T = 0 - 4.5 ms
interrogation time, resulting in g / g = 2.0e-6. This work represents
a significant step towards deployable cold-atom inertial sensors under large
amplitude motional dynamics.Comment: 21 pages, 10 figure