28 research outputs found

    Motion estimation and correction for simultaneous PET/MR using SIRF and CIL

    Get PDF
    SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'

    SIRF: Synergistic Image Reconstruction Framework

    Get PDF
    The combination of positron emission tomography (PET) with magnetic resonance (MR) imaging opens the way to more accurate diagnosis and improved patient management. At present, the data acquired by PET-MR scanners are essentially processed separately, but the opportunity to improve accuracy of the tomographic reconstruction via synergy of the two imaging techniques is an active area of research. In this paper, we present Release 2.1.0 of the CCP-PETMR Synergistic Image Reconstruction Framework (SIRF) software suite, providing an open-source software platform for efficient implementation and validation of novel reconstruction algorithms. SIRF provides user-friendly Python and MATLAB interfaces built on top of C++ libraries. SIRF uses advanced PET and MR reconstruction software packages and tools. Currently, for PET this is Software for Tomographic Image Reconstruction (STIR); for MR, Gadgetron and ISMRMRD; and for image registration tools, NiftyReg. The software aims to be capable of reconstructing images from acquired scanner data, whilst being simple enough to be used for educational purposes

    SIRF: Synergistic Image Reconstruction Framework

    Get PDF
    The combination of positron emission tomography (PET) with magnetic resonance (MR) imaging opens the way to more accurate diagnosis and improved patient management. At present, the data acquired by PET-MR scanners are essentially processed separately, but the opportunity to improve accuracy of the tomographic reconstruction via synergy of the two imaging techniques is an active area of research. In this paper, we present Release 2.1.0 of the CCP-PETMR Synergistic Image Reconstruction Framework (SIRF) software suite, providing an open-source software platform for efficient implementation and validation of novel reconstruction algorithms. SIRF provides user-friendly Python and MATLAB interfaces built on top of C++ libraries. SIRF uses advanced PET and MR reconstruction software packages and tools. Currently, for PET this is Software for Tomographic Image Reconstruction (STIR); for MR, Gadgetron and ISMRMRD; and for image registration tools, NiftyReg. The software aims to be capable of reconstructing images from acquired scanner data, whilst being simple enough to be used for educational purposes. The most recent version of the software can be downloaded from http://www.ccppetmr.ac.uk/downloads and https://github.com/CCPPETMR/. Program summary: Program Title: Synergistic Image Reconstruction Framework (SIRF) Program Files DOI: http://dx.doi.org/10.17632/s45f5jh55j.1 Licensing provisions: GPLv3 and Apache-2.0 Programming languages: C++, C, Python, MATLAB Nature of problem: In current practice, data acquired by PET-MR scanners are processed separately. Methods for improving the accuracy of the tomographic reconstruction using the synergy of the two imaging techniques are actively being investigated by the PET-MR research and development community, however, practical application is heavily reliant on software. Open-source software available to the PET-MR community – such as the PET package (STIR) (Thielemans et al., 2012) and the MR package Gadgetron (Hansen and Sørensen, 2013) – provide a basis for new synergistic PET-MR software. However, these two software packages are independent and have very different software architectures. They are mostly written in C++ but many researchers in the PET-MR community are more familiar with script-style languages, such as Python and MATLAB, which enable rapid prototyping of novel reconstruction algorithms. In the current situation it is difficult for researchers to exploit any synergy between PET and MR data. Furthermore, techniques from one field cannot easily be applied in the other. Solution method: In SIRF, the bulk of computation is performed by available advanced open-source reconstruction and registration software (currently STIR, Gadgetron and NiftyReg) that can use multithreading and GPUs. The SIRF C++ code provides a thin layer on top of these existing libraries. The SIRF layer has unified data-containers and access mechanisms. This C++ layer provides the basis for a simple and intuitive Python and MATLAB interface, enabling users to quickly develop and test their reconstruction algorithms using these scripting languages only. At the same time, advanced users proficient in C++ can directly utilise wider SIRF functionality via the SIRF C++ libraries that we provide

    Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards

    Get PDF
    Abstract Background There has been significant progress in identifying genes that confer risk for autism spectrum disorders (ASDs). However, the heterogeneity of symptom presentation in ASDs impedes the detection of ASD risk genes. One approach to understanding genetic influences on ASD symptom expression is to evaluate relations between variants of ASD candidate genes and neural endophenotypes in unaffected samples. Allelic variations in the oxytocin receptor (OXTR) gene confer small but significant risk for ASDs for which the underlying mechanisms may involve associations between variability in oxytocin signaling pathways and neural response to rewards. The purpose of this preliminary study was to investigate the influence of allelic variability in the OXTR gene on neural responses to monetary rewards in healthy adults using functional magnetic resonance imaging (fMRI). Methods The moderating effects of three single nucleotide polymorphisms (SNPs) (rs1042778, rs2268493 and rs237887) of the OXTR gene on mesolimbic responses to rewards were evaluated using a monetary incentive delay fMRI task. Results T homozygotes of the rs2268493 SNP demonstrated relatively decreased activation in mesolimbic reward circuitry (including the nucleus accumbens, amygdala, insula, thalamus and prefrontal cortical regions) during the anticipation of rewards but not during the outcome phase of the task. Allelic variation of the rs1042778 and rs237887 SNPs did not moderate mesolimbic activation during either reward anticipation or outcomes. Conclusions This preliminary study suggests that the OXTR SNP rs2268493, which has been previously identified as an ASD risk gene, moderates mesolimbic responses during reward anticipation. Given previous findings of decreased mesolimbic activation during reward anticipation in ASD, the present results suggest that OXTR may confer ASD risk via influences on the neural systems that support reward anticipation

    The past, present, and future of the brain imaging data structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.Development of the BIDS Standard has been supported by the International Neuroinformatics Coordinating Facility, Laura and John Arnold Foundation, National Institutes of Health (R24MH114705, R24MH117179, R01MH126699, R24MH117295, P41EB019936, ZIAMH002977, R01MH109682, RF1MH126700, R01EB020740), National Science Foundation (OAC-1760950, BCS-1734853, CRCNS-1429999, CRCNS-1912266), Novo Nordisk Fonden (NNF20OC0063277), French National Research Agency (ANR-19-DATA-0023, ANR 19-DATA-0021), Digital Europe TEF-Health (101100700), EU H2020 Virtual Brain Cloud (826421), Human Brain Project (SGA2 785907, SGA3 945539), European Research Council (Consolidator 683049), German Research Foundation (SFB 1436/425899996), SFB 1315/327654276, SFB 936/178316478, SFB-TRR 295/424778381), SPP Computational Connectomics (RI 2073/6-1, RI 2073/10-2, RI 2073/9-1), European Innovation Council PHRASE Horizon (101058240), Berlin Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative, ERAPerMed Pattern-Cog, and the Virtual Research Environment at the Charité Berlin – a node of EBRAINS Health Data Cloud.N

    The past, present, and future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    Motion correction of PET for improved image quality

    No full text
    corecore