53 research outputs found

    Regioselective routes to orthogonally-substituted aromatic MIDA boronates

    Get PDF
    A series of tetrasubstituted aromatics has been synthesized, many of which are based on elaborated N-methyliminodiacetic acid (MIDA)-boronates. A sequence employing nitration, bromination, stepwise Suzuki-Miyaura (SM) coupling with a boronic acid, then base-mediated unmasking of the boronic acid from the MIDA-boronate and a second SM-coupling has led to our desired, mainly 1,2,4,5-substituted tetrasubstituted aromatic targets

    A Multi-Omic Systems-Based Approach Reveals Metabolic Markers of Bacterial Vaginosis and Insight into the Disease

    No full text
    <div><h3>Background</h3><p>Bacterial vaginosis (BV) is the most common vaginal disorder of reproductive-age women. Yet the cause of BV has not been established. To uncover key determinants of BV, we employed a multi-omic, systems-biology approach, including both deep 16S rRNA gene-based sequencing and metabolomics of lavage samples from 36 women. These women varied demographically, behaviorally, and in terms of health status and symptoms.</p> <h3>Principal Findings</h3><p>16S rRNA gene-based community composition profiles reflected Nugent scores, but not Amsel criteria. In contrast, metabolomic profiles were markedly more concordant with Amsel criteria. Metabolomic profiles revealed two distinct symptomatic BV types (SBVI and SBVII) with similar characteristics that indicated disruption of epithelial integrity, but each type was correlated to the presence of different microbial taxa and metabolites, as well as to different host behaviors. The characteristic odor associated with BV was linked to increases in putrescine and cadaverine, which were both linked to <em>Dialister</em> spp. Additional correlations were seen with the presence of discharge, 2-methyl-2-hydroxybutanoic acid, and <em>Mobiluncus</em> spp., and with pain, diethylene glycol and <em>Gardnerella</em> spp.</p> <h3>Conclusions</h3><p>The results not only provide useful diagnostic biomarkers, but also may ultimately provide much needed insight into the determinants of BV.</p> </div

    Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin

    Get PDF
    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-Îł ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-Îł spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site
    • …
    corecore