8 research outputs found

    Seedling Emergence from Seed Banks in Ludwigia hexapetala-Invaded Wetlands: Implications for Restoration

    Get PDF
    Soil seed banks play a critical role in the maintenance of wetland plant communities and contribute to revegetation following disturbances. Analysis of the seed bank can therefore inform restoration planning and management. Emergence from seed banks may vary in response to hydrologic conditions and sediment disturbances. To assess the community-level impact of exotic Ludwigia hexapetala on soil seed banks, we compared differences in species composition of standing vegetation among invaded and non-invaded wetlands and the degree of similarity between vegetation and soil seed banks in northern California. To determine potential seed bank recruitment of L. hexapetala and associated plant species, we conducted a seedling emergence assay in response to inundation regime (drawdown vs. flooded) and sediment depth (surface vs. buried). Plant species richness, evenness, and Shannon’s H’ diversity were substantially lower in standing vegetation at L. hexapetala invaded sites as compared to non-invaded sites. Over 12 months, 69 plant taxa germinated from the seed banks, including L. hexapetala and several other exotic taxa. Seedling density varied among sites, being the highest (10,500 seedlings m−2) in surface sediments from non-invaded sites subjected to drawdown treatments. These results signal the need for invasive plant management strategies to deplete undesirable seed banks for restoration success

    High aqueous salinity does not preclude germination of invasive Iris pseudacorus from estuarine populations

    Get PDF
    Estuarine ecosystems are threatened by climate change and biological invasions. Among global changes, sea-level rise is broadly impacting tidal wetlands, through increases in salinity and alteration of inundation regimes. Extant freshwater plant species are often presumed to be limited to reaches of estuaries with low salinity and narrow tidal ranges. However, the potential for invasive freshwater species (e.g., Iris pseudacorus) to persist and spread with increased salinity and flooding is poorly understood and can jeopardize native biodiversity and other wetland ecosystem services. The successful establishment of invasive plants will be dependent on their tolerance to salinity and inundation, starting with the germination life stage. Changes to abiotic estuarine gradients may alter the germination process of tidal wetland plant species that underlies significant patterns of plant community composition and biodiversity. We explored germination responses of seeds from two invasive I. pseudacorus populations from freshwater and brackish tidal sites in California’s San Francisco Bay–Delta Estuary. We tested germination dynamics under salinity levels ranging from freshwater to seawater (0, 12.5, 25, and 45 dS/m) and two hydrological conditions (moist and flooded). Salinity levels >12.5 dS/m inhibited germination of seeds from both populations, consistent with viviparism and seedling emergence recorded at field sites. However, seeds exposed to seawater for 55 d germinated once exposed to freshwater. Germination velocity and seed buoyancy differed between populations, likely due to differences in seed coat thickness. Our results demonstrate that after 55 d in seawater, buoyant seeds of I. pseudacorus retain their ability to germinate, and germinate quickly with freshwater exposure. This suggests that invasive populations of I. pseudacorus can colonize new sites following potentially long-distance dispersal of buoyant seeds with tidal currents. These findings inform risk assessments and highlight the need to prioritize the management of invasive I. pseudacorus in estuarine ecosystems impacted by rising sea level

    Heterogenous Impact of Water Warming on Exotic and Native Submerged and Emergent Plants in Outdoor Mesocosms

    No full text
    International audienceSome aquatic plants present high biomass production with serious consequences on ecosystem functioning. Such mass development can be favored by environmental factors. Temperature increases are expected to modify individual species responses that could shape future communities. We explored the impact of rising water temperature on the growth, phenology, and metabolism of six macrophytes belonging to two biogeographic origins (exotic, native) and two growth forms (submerged, emergent). From June to October, they were exposed to ambient temperatures and a 3 °C warming in outdoor mesocosms. Percent cover and canopy height were favored by warmer water for the exotic emergent Ludwigia hexapetala. Warming did not modify total final biomass for any of the species but led to a decrease in total soluble sugars for all, possibly indicating changes in carbon allocation. Three emergent species presented lower flavonol and anthocyanin contents under increased temperatures, suggesting lower investment in defense mechanisms and mitigation of the stress generated by autumn temperatures. Finally, the 3 °C warming extended and shortened flowering period for L. hexapetala and Myosotis scorpioides, respectively. The changes generated by increased temperature in outdoor conditions were heterogenous and varied depending on species but not on species biogeographic origin or growth form. Results suggest that climate warming could favor the invasiveness of L. hexapetala and impact the structure and composition of aquatic plants communities

    High aqueous salinity does not preclude germination of invasive Iris pseudacorus from estuarine populations

    No full text
    Abstract Estuarine ecosystems are threatened by climate change and biological invasions. Among global changes, sea‐level rise is broadly impacting tidal wetlands, through increases in salinity and alteration of inundation regimes. Extant freshwater plant species are often presumed to be limited to reaches of estuaries with low salinity and narrow tidal ranges. However, the potential for invasive freshwater species (e.g., Iris pseudacorus) to persist and spread with increased salinity and flooding is poorly understood and can jeopardize native biodiversity and other wetland ecosystem services. The successful establishment of invasive plants will be dependent on their tolerance to salinity and inundation, starting with the germination life stage. Changes to abiotic estuarine gradients may alter the germination process of tidal wetland plant species that underlies significant patterns of plant community composition and biodiversity. We explored germination responses of seeds from two invasive I. pseudacorus populations from freshwater and brackish tidal sites in California’s San Francisco Bay–Delta Estuary. We tested germination dynamics under salinity levels ranging from freshwater to seawater (0, 12.5, 25, and 45 dS/m) and two hydrological conditions (moist and flooded). Salinity levels >12.5 dS/m inhibited germination of seeds from both populations, consistent with viviparism and seedling emergence recorded at field sites. However, seeds exposed to seawater for 55 d germinated once exposed to freshwater. Germination velocity and seed buoyancy differed between populations, likely due to differences in seed coat thickness. Our results demonstrate that after 55 d in seawater, buoyant seeds of I. pseudacorus retain their ability to germinate, and germinate quickly with freshwater exposure. This suggests that invasive populations of I. pseudacorus can colonize new sites following potentially long‐distance dispersal of buoyant seeds with tidal currents. These findings inform risk assessments and highlight the need to prioritize the management of invasive I. pseudacorus in estuarine ecosystems impacted by rising sea level

    Germination niche breadth of invasive Iris pseudacorus (L.) suggests continued recruitment from seeds with global warming

    No full text
    Premise: Understanding recruitment processes of invasive species is central to conservation and management strategies. Iris pseudacorus, an emergent macrophyte, has established invasive populations across a broad global range, and reduces biodiversity in wetland ecosystems. Climate change is altering germination cues, yet studies on the invasion of wetland macrophytes often ignore germination ecology despite its importance to their establishment and spread. Methods: We explored germination of seeds from invasive I. pseudacorus populations in California in response to seed coat presence or absence, and several environmental factors. Using experimental results in a thermal time model, we derived germination temperature thresholds. Results: Germination of I. pseudacorus seeds did not require cold or warm stratification, and was not affected by seed coat presence or absence. Germination occurred in the dark, although germinability was two‐ to threefold times greater under light. At constant temperature, thermal time model estimates included 18.3 ± 1.8°C base germination temperature (Tb); 28.2 ± 0.5°C optimal temperature (To); and 41.0 ± 1.7°C ceiling temperature (Tc). Seeds exposed to 36.0°C achieved over 10% germination, and embryos of ungerminated seeds presented 76% viability. Overall, germinability remained relatively low at constant temperatures (≤25%) but was close to 90% under alternating daily temperatures. Conclusions: Exposure to diurnally fluctuating temperatures is essential for this species to achieve high germination rates. Our study reveals that I. pseudacorus has a broad germination niche supporting its establishment in a relatively wide range of environments, including at high temperatures more frequent with climate change

    Bile Acid Dysregulation Is Intrinsically Related to Cachexia in Tumor-Bearing Mice

    No full text
    SIMPLE SUMMARY : Cancer cachexia is considered a multi-organ syndrome. An improved understanding of how circulating molecules can affect tissues and mediate their crosstalk in the pathogenesis of cancer cachexia is emerging. Considering the various actions of bile acids on host metabolism and immunity, they could represent innovative targets in cancer cachexia. In this study, we investigated how bile acids could contribute to this syndrome by assessing the bile flow, by comparing the impact on bile acid pathways of cachexia-inducing and non-cachexia-inducing cell sublines, and by investigating the effects of ursodeoxycholic acid, a choleretic compound, in cachectic mice. Altogether, our analyses strengthen the importance of bile acids and their receptors as key players in the metabolic disorders associated with cancer, thereby laying the foundation for new therapeutic opportunities. ABSTRACT : Bile acids exert diverse actions on host metabolism and immunity through bile acid-activated receptors, including Takeda G protein-coupled receptor 5 (TGR5). We have recently evidenced an alteration in bile acids in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. This current study aims to further explore the links emerging between bile acids and cancer cachexia. First, we showed that bile flow is reduced in cachectic mice. Next, comparing mice inoculated with cachexia-inducing and with non-cachexia-inducing C26 colon carcinoma cells, we demonstrated that alterations in the bile acid pathways and profile are directly associated with cachexia. Finally, we performed an interventional study using ursodeoxycholic acid (UDCA), a compound commonly used in hepatobiliary disorders, to induce bile acid secretion and decrease inflammation. We found that UDCA does not improve hepatic inflammation and worsens muscle atrophy in cachectic mice. This exacerbation of the cachectic phenotype upon UDCA was accompanied by a decreased TGR5 activity, suggesting that TGR5 agonists, known to reduce inflammation in several pathological conditions, could potentially counteract cachectic features. This work brings to light major evidence sustaining the emerging links between bile acids and cancer cachexia and reinforces the interest in studying bile acid-activated receptors in this context

    Inflammation-induced cholestasis in cancer cachexia.

    No full text
    BACKGROUND: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS: We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS: In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 μM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS: We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia
    corecore