227 research outputs found
Contribution of Lianas to Plant Area Index and Canopy Structure in A Panamanian Forest
Lianas are an important component of tropical forests, where they reduce tree growth, fecundity, and survival. Competition for light from lianas may be intense; however, the amount of light that lianas intercept is poorly understood. We used a large-scale liana-removal experiment to quantify light interception by lianas in a Panamanian secondary forest. We measured the change in plant area index (PAI) and forest structure before and after cutting lianas (for 4 yr) in eight 80 m Ă 80 m plots and eight control plots (16 plots total). We used ground-based LiDAR to measure the 3-dimensional canopy structure before cutting lianas, and then annually for 2 yr afterwards. Six weeks after cutting lianas, mean plot PAI was 20% higher in control vs. liana removal plots. One yr after cutting lianas, mean plot PAI was ~17% higher in control plots. The differences between treatments diminished significantly 2 yr after liana cutting and, after 4 yr, trees had fully compensated for liana removal. Ground-based LiDAR revealed that lianas attenuated light in the upper- and middle-forest canopy layers, and not only in the upper canopy as was previously suspected. Thus, lianas compete with trees by intercepting light in the upper- and mid-canopy of this forest
The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117132/1/ecy20119291818.pd
Observations of stem water storage in trees of opposing hydraulic strategies
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116368/1/ecs2201569165.pd
Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought
Soil moisture and gross primary productivity (GPP) estimates from the Soil Moisture Active Passive (SMAP) and solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) provide new opportunities for understanding the relationship between soil moisture and terrestrial photosynthesis over large regions. Here we explored the potential of the synergistic use of SMAP and OCO-2 based data for monitoring the responses of ecosystem productivity to drought. We used complementary observational information on root-zone soil moisture and GPP (9 km) from SMAP and fine-resolution SIF (0.05°; GOSIF) derived from OCO-2 SIF soundings. We compared the spatial pattern and temporal evolution of anomalies of these variables over the conterminous U.S. during the 2018 drought, and examined to what extent they could characterize the drought-induced variations of flux tower GPP and crop yield data. Our results showed that SMAP GPP and GOSIF, both freely available online, could well capture the spatial extent and dynamics of the impacts of drought indicated by the U.S. Drought Monitor maps and the SMAP root-zone soil moisture deficit. Over the U.S. Southwest, monthly anomalies of soil moisture showed significant positive correlations with those of SMAP GPP (RÂČ = 0.44, p < 0.001) and GOSIF (RÂČ = 0.76, p < 0.001), demonstrating strong water availability constraints on plant productivity across dryland ecosystems. We further found that SMAP GPP and GOSIF captured the impact of drought on tower GPP and crop yield. Our results suggest that synergistic use of SMAP and OCO-2 data products can reveal the drought evolution and its impact on ecosystem productivity and carbon uptake at multiple spatial and temporal scales, and demonstrate the value of SMAP and OCO-2 for studying ecosystem function, carbon cycling, and climate change
Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought
Soil moisture and gross primary productivity (GPP) estimates from the Soil Moisture Active Passive (SMAP) and solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) provide new opportunities for understanding the relationship between soil moisture and terrestrial photosynthesis over large regions. Here we explored the potential of the synergistic use of SMAP and OCO-2 based data for monitoring the responses of ecosystem productivity to drought. We used complementary observational information on root-zone soil moisture and GPP (9 km) from SMAP and fine-resolution SIF (0.05°; GOSIF) derived from OCO-2 SIF soundings. We compared the spatial pattern and temporal evolution of anomalies of these variables over the conterminous U.S. during the 2018 drought, and examined to what extent they could characterize the drought-induced variations of flux tower GPP and crop yield data. Our results showed that SMAP GPP and GOSIF, both freely available online, could well capture the spatial extent and dynamics of the impacts of drought indicated by the U.S. Drought Monitor maps and the SMAP root-zone soil moisture deficit. Over the U.S. Southwest, monthly anomalies of soil moisture showed significant positive correlations with those of SMAP GPP (RÂČ = 0.44, p < 0.001) and GOSIF (RÂČ = 0.76, p < 0.001), demonstrating strong water availability constraints on plant productivity across dryland ecosystems. We further found that SMAP GPP and GOSIF captured the impact of drought on tower GPP and crop yield. Our results suggest that synergistic use of SMAP and OCO-2 data products can reveal the drought evolution and its impact on ecosystem productivity and carbon uptake at multiple spatial and temporal scales, and demonstrate the value of SMAP and OCO-2 for studying ecosystem function, carbon cycling, and climate change
A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality Across 20 AmeriFlux Flux Tower Sites
.
Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (Δmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (Δmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC modelâs explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation
Contrasting strategies of hydraulic control in two codominant temperate tree species
Biophysical controls on plant water status exist at the leaf, stem, and root levels. Therefore, we pose that hydraulic strategy is a combination of traits governing water use at each of these three levels. We studied sap flux, stem water storage, stomatal conductance, photosynthesis, and growth of red oaks (Quercus rubra) and red maples (Acer rubrum). These species differ in stomatal hydraulic strategy and xylem architecture and may root at different depths. Stable isotope analysis of xylem water was used to identify root water uptake depth. Oaks were shown to access a deeper water source than maples. During nonâlimiting soil moisture conditions, transpiration was greater in maples than in oaks. However, during a soil dry down, transpiration and stem water storage decreased by more than 80% and 28% in maples but only by 31% and 1% in oaks. We suggest that the preferential use of deep water by red oaks allows the species to continue transpiration and growth during soil water limitations. In this case, deeper roots may provide a buffer against droughtâinduced mortality. Using 14Â years of growth data, we show that maple growth correlates with mean annual soil moisture at 30Â cm but oak growth does not. The observed responses of oak and maple to drought were not able to be explained by leaf and xylem physiology alone. We employed the Finiteâdifference Ecosystemâscale Tree Crown Hydrodynamics model version 2 plant hydrodynamics model to demonstrate the influence of root, stem, and leaf controls on treeâlevel transpiration. We conclude that all three levels of hydraulic traits are required to define hydraulic strategy.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136732/1/eco1815_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136732/2/eco1815.pd
Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117030/1/eap20132351202.pd
A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites
Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (Émsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (Émsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model\u27s explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation
- âŠ