251 research outputs found

    Guided Unfoldings for Finding Loops in Standard Term Rewriting

    Full text link
    In this paper, we reconsider the unfolding-based technique that we have introduced previously for detecting loops in standard term rewriting. We improve it by guiding the unfolding process, using distinguished positions in the rewrite rules. This results in a depth-first computation of the unfoldings, whereas the original technique was breadth-first. We have implemented this new approach in our tool NTI and compared it to the previous one on a bunch of rewrite systems. The results we get are promising (better times, more successful proofs).Comment: Pre-proceedings paper presented at the 28th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2018), Frankfurt am Main, Germany, 4-6 September 2018 (arXiv:1808.03326

    Loops under Strategies ... Continued

    Full text link
    While there are many approaches for automatically proving termination of term rewrite systems, up to now there exist only few techniques to disprove their termination automatically. Almost all of these techniques try to find loops, where the existence of a loop implies non-termination of the rewrite system. However, most programming languages use specific evaluation strategies, whereas loop detection techniques usually do not take strategies into account. So even if a rewrite system has a loop, it may still be terminating under certain strategies. Therefore, our goal is to develop decision procedures which can determine whether a given loop is also a loop under the respective evaluation strategy. In earlier work, such procedures were presented for the strategies of innermost, outermost, and context-sensitive evaluation. In the current paper, we build upon this work and develop such decision procedures for important strategies like leftmost-innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and forbidden patterns (which generalize innermost, outermost, and context-sensitive strategies). In this way, we obtain the first approach to disprove termination under these strategies automatically.Comment: In Proceedings IWS 2010, arXiv:1012.533

    First-order formative rules

    Get PDF
    This paper discusses the method of formative rules for first-order term rewriting, which was previously defined for a higher-order setting. Dual to the well-known usable rules, formative rules allow dropping some of the term constraints that need to be solved during a termination proof. Compared to the higher-order definition, the first-order setting allows for significant improvements of the technique

    Automated Termination Proofs for Logic Programs by Term Rewriting

    Full text link
    There are two kinds of approaches for termination analysis of logic programs: "transformational" and "direct" ones. Direct approaches prove termination directly on the basis of the logic program. Transformational approaches transform a logic program into a term rewrite system (TRS) and then analyze termination of the resulting TRS instead. Thus, transformational approaches make all methods previously developed for TRSs available for logic programs as well. However, the applicability of most existing transformations is quite restricted, as they can only be used for certain subclasses of logic programs. (Most of them are restricted to well-moded programs.) In this paper we improve these transformations such that they become applicable for any definite logic program. To simulate the behavior of logic programs by TRSs, we slightly modify the notion of rewriting by permitting infinite terms. We show that our transformation results in TRSs which are indeed suitable for automated termination analysis. In contrast to most other methods for termination of logic programs, our technique is also sound for logic programming without occur check, which is typically used in practice. We implemented our approach in the termination prover AProVE and successfully evaluated it on a large collection of examples.Comment: 49 page

    Proving Non-Termination via Loop Acceleration

    Get PDF
    We present the first approach to prove non-termination of integer programs that is based on loop acceleration. If our technique cannot show non-termination of a loop, it tries to accelerate it instead in order to find paths to other non-terminating loops automatically. The prerequisites for our novel loop acceleration technique generalize a simple yet effective non-termination criterion. Thus, we can use the same program transformations to facilitate both non-termination proving and loop acceleration. In particular, we present a novel invariant inference technique that is tailored to our approach. An extensive evaluation of our fully automated tool LoAT shows that it is competitive with the state of the art

    Termination of Triangular Integer Loops is Decidable

    Get PDF
    We consider the problem whether termination of affine integer loops is decidable. Since Tiwari conjectured decidability in 2004, only special cases have been solved. We complement this work by proving decidability for the case that the update matrix is triangular

    Well-definedness of Streams by Transformation and Termination

    Get PDF
    Streams are infinite sequences over a given data type. A stream specification is a set of equations intended to define a stream. We propose a transformation from such a stream specification to a term rewriting system (TRS) in such a way that termination of the resulting TRS implies that the stream specification is well-defined, that is, admits a unique solution. As a consequence, proving well-definedness of several interesting stream specifications can be done fully automatically using present powerful tools for proving TRS termination. In order to increase the power of this approach, we investigate transformations that preserve semantics and well-definedness. We give examples for which the above mentioned technique applies for the ransformed specification while it fails for the original one

    Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation

    Get PDF
    A contraction metric for an autonomous ordinary differential equation is a Riemannian metric such that the distance between adjacent solutions contracts over time. A contraction metric can be used to determine the basin of attraction of a periodic orbit without requiring information about its position or stability. Moreover, it is robust to small perturbations of the system. In two-dimensional systems, a contraction metric can be characterised by a scalar-valued function. In [9], the function was constructed as solution of a first-order linear Partial Differential Equation (PDE), and numerically constructed using meshless collocation. However, information about the periodic orbit was required, which needed to be approximated. In this paper, we overcome this requirement by studying a second-order PDE, which does not require any information about the periodic orbit. We show that the second-order PDE has a solution, which defines a contraction metric. We use meshless collocation to approximate the solution and prove error estimates. In particular, we show that the approximation itself is a contraction metric, if the collocation points are dense enough. The method is applied to two examples

    The dependency pair framework: Combining techniques for automated termination proofs

    Get PDF
    Abstract. The dependency pair approach is one of the most powerful techniques for automated termination proofs of term rewrite systems. Up to now, it was regarded as one of several possible methods to prove termination. In this paper, we show that dependency pairs can instead be used as a general concept to integrate arbitrary techniques for termination analysis. In this way, the benefits of different techniques can be combined and their modularity and power are increased significantly. We refer to this new concept as the “dependency pair framework ” to distinguish it from the old “dependency pair approach”. Moreover, this framework facilitates the development of new methods for termination analysis. To demonstrate this, we present several new techniques within the dependency pair framework which simplify termination problems considerably. We implemented the dependency pair framework in our termination prover AProVE and evaluated it on large collections of examples.
    corecore