30 research outputs found
Physically Triggered Morphology Changes in a Novel Acremonium Isolate Cultivated in Precisely Engineered Microfabricated Environments.
Fungi are strongly affected by their physical environment. Microfabrication offers the possibility of creating new culture environments and ecosystems with defined characteristics. Here, we report the isolation of a novel member of the fungal genus Acremonium using a microengineered cultivation chip. This isolate was unusual in that it organizes into macroscopic structures when initially cultivated within microwells with a porous aluminum oxide (PAO) base. These "templated mycelial bundles" (TMB) were formed from masses of parallel hyphae with side branching suppressed. TMB were highly hydrated, facilitating the passive movement of solutes along the bundle. By using a range of culture chips, it was deduced that the critical factors in triggering the TMB were growth in microwells from 50 to 300 μm in diameter with a PAO base. Cultivation experiments, using spores and pigments as tracking agents, indicate that bulk growth of the TMB occurs at the base. TMB morphology is highly coherent and is maintained after growing out of the microwells. TMB can explore their environment by developing unbundled lateral hyphae; TMB only followed if nutrients were available. Because of the ease of fabricating numerous microstructures, we suggest this is a productive approach for exploring morphology and growth in multicellular microorganisms and microbial communities
Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential.
The spread of multi-drug resistance and the slow pace at which antibiotics come onto the market are undermining our ability to treat human infections, leading to high mortality rates. Aiming to overcome this global crisis, antimicrobial peptides are considered promising alternatives to counter bacterial infections with multi-drug resistant bacteria. The cathelicidins comprise a well-studied class of AMPs whose members have been used as model molecules for sequence modifications, aiming at enhanced biological activities and stability, along with reduced toxic effects on mammalian cells. Here, we describe the antimicrobial activities, modes of action and structural characterization of two novel cathelicidin-like peptides, named BotrAMP14 and CrotAMP14, which were re-designed from snake batroxicidin and crotalicidin, respectively. BotrAMP14 and CrotAMP14 showed broad-spectrum antibacterial activity against susceptible microorganisms and clinical isolates with minimal inhibitory concentrations ranging from 2-35.1 μM. Moreover, both peptides had low cytotoxicity against Caco-2 cells in vitro. In addition, in vivo toxicity against Galleria mellonella moth larvae revealed that both peptides led to>76% larval survival after 144 h. Microscopy studies suggest that BotrAMP14 and CrotAMP14 destabilize E. coli membranes. Furthermore, circular dichroism and molecular dynamics simulations indicate that, in a membrane-like environment, both peptides adopt α-helical structures that interact with bilayer phospholipids through hydrogen bonds and electrostatic interaction. Thus, we concluded that BotrAMP14 and CrotAMP14 are helical membrane active peptides, with similar antibacterial properties but lower cytotoxicity than the larger parent peptides batroxicidin and crotalicidin, having advantages for drug development strategies
A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity.
Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota
Mechanisms involved in down-regulation of intestinal IgA in rats by high cocoa intake
Previous studies have shown that rat intestinal immunoglobulin A (IgA) concentration and lymphocyte composition of the intestinal immune system were influenced by a highly enriched cocoa diet. The aim of this study was to dissect the mechanisms by which a long-term high cocoa intake was capable of modifying gut secretory IgA in Wistar rats. After 7 weeks of nutritional intervention, Peyer's patches, mesenteric lymph nodes and the small intestine were excised for gene expression assessment of IgA, transforming growth factor ß, C-C chemokine receptor-9 (CCR9), interleukin (IL)-6, CD40, retinoic acid receptors (RAR¿ and RARß), C-C chemokine ligand (CCL)-25 and CCL28 chemokines, polymeric immunoglobulin receptor and toll-like receptors (TLR) expression by real-time polymerase chain reaction. As in previous studies, secretory IgA concentration decreased in intestinal wash and fecal samples after cocoa intake. Results from the gene expression showed that cocoa intake reduced IgA and IL¿6 in Peyer's patches and mesenteric lymph nodes, whereas in small intestine, cocoa decreased IgA, CCR9, CCL28, RAR¿ and RARß. Moreover, cocoa-fed animals presented an altered TLR expression pattern in the three compartments studied. In conclusion, a high-cocoa diet down-regulated cytokines such as IL-6, which is required for the activation of B cells to become IgA-secreting cells, chemokines and chemokine receptors, such as CCL28 and CCR9 together with RAR¿ and RARß, which are involved in the gut homing of IgA-secreting cells. Moreover, cocoa modified the cross-talk between microbiota and intestinal cells as was detected by an altered TLR pattern. These overall effects in the intestine may explain the intestinal IgA down-regulatory effect after the consumption of a long-term cocoa-enriched diet
Recommended from our members
Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential.
Simulation of XPS C1s Spectra of Organic Monolayers by Quantum Chemical Methods
Several
simple methods are presented and evaluated to simulate
the X-ray photoelectron spectra (XPS) of organic monolayers and polymeric
layers by density functional theory (DFT) and second-order Møller–Plesset
theory (MP2) in combination with a series of basis sets. The simulated
carbon (C1s) XPS spectra as obtained via B3LYP/6-311GÂ(d,p) or M11/6-311GÂ(d,p)
calculations are in good agreement (average mean error <0.3 eV)
with the experimental spectra, and good estimates of C1s spectra can
be obtained via <i>E</i><sub>C1s</sub>(exp) = 0.9698<i>E</i><sub>C1s</sub>(theory) + 20.34 (in eV) (B3LYP/6-311GÂ(d,p)).
As a result, the simulated C1s XPS spectra can elucidate the binding
energies of the different carbon species within an organic layer and,
in this way, greatly aid the assignment of complicated C1s XPS spectra.
The paper gives a wide range of examples, including haloalkanes, esters,
(thio-)Âethers, leaving groups, clickable functionalities, and bioactive
moieties
African eggplant-associated virus: Characterization of a novel tobamovirus identified from Solanum macrocarpon and assessment of its potential impact on tomato and pepper crops.
A novel tobamovirus was identified in a fruit of Solanum macrocarpon imported into the Netherlands in 2018. This virus was further characterized in terms of host range, pathotype and genomic properties, because many tobamoviruses have the potential to cause severe damage in important crops. In the original fruit, two different genotypes of the novel virus were present. The virus was able to infect multiple plant species from the Solanaceae family after mechanical inoculation, as well as a member of the Apiaceae family. These species included economically important crops such as tomato and pepper, as well as eggplant and petunia. Both tomato and pepper germplasm were shown to harbor resistance against the novel virus. Since most commercial tomato and pepper varieties grown in European greenhouses harbor these relevant resistances, the risk of infection and subsequent impact on these crops is likely to be low in Europe. Assessment of the potential threat to eggplant, petunia, and other susceptible species needs further work. In conclusion, this study provides a first assessment of the potential phytosanitary risks of a newly discovered tobamovirus, which was tentatively named African eggplant-associated virus
African eggplant-associated virus: Characterization of a novel tobamovirus identified from Solanum macrocarpon and assessment of its potential impact on tomato and pepper crops
A novel tobamovirus was identified in a fruit of Solanum macrocarpon imported into the Netherlands in 2018. This virus was further characterized in terms of host range, pathotype and genomic properties, because many tobamoviruses have the potential to cause severe damage in important crops. In the original fruit, two different genotypes of the novel virus were present. The virus was able to infect multiple plant species from the Solanaceae family after mechanical inoculation, as well as a member of the Apiaceae family. These species included economically important crops such as tomato and pepper, as well as eggplant and petunia. Both tomato and pepper germplasm were shown to harbor resistance against the novel virus. Since most commercial tomato and pepper varieties grown in European greenhouses harbor these relevant resistances, the risk of infection and subsequent impact on these crops is likely to be low in Europe. Assessment of the potential threat to eggplant, petunia, and other susceptible species needs further work. In conclusion, this study provides a first assessment of the potential phytosanitary risks of a newly discovered tobamovirus, which was tentatively named African eggplant-associated virus
Generic Top-Functionalization of Patterned Antifouling Zwitterionic Polymers on Indium Tin Oxide
This paper presents a novel surface engineering approach
that combines photochemical grafting and surface-initiated atom transfer
radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes
onto indium tin oxide (ITO) substrates. The photochemically grafted
hydroxyl-terminated organic layer serves as an excellent platform
for initiator attachment, and the zwitterionic polymer generated via
subsequent SI-ATRP exhibits very good antifouling properties. Patterned
polymer coatings can be obtained when the surface with covalently
attached initiator was subjected to photomasked UV-irradiation, in
which the C–Br bond that is present in the initiator was broken
upon exposure to UV light. A further, highly versatile top-functionalization
of the zwitterionic polymer brush was achieved by a strain-promoted
alkyne–azide cycloaddition, without compromising its antifouling
property. The attached bioligand (here: biotin) enables the specific
immobilization of target proteins in a spatially confined fashion,
pointing to future applications of this approach in the design of
micropatterned sensing platforms on ITO substrates