819 research outputs found
Photon propagation in a cold axion background with and without magnetic field
A cold relic axion condensate resulting from vacuum misalignment in the early
universe oscillates with a frequency m, where m is the axion mass. We determine
the properties of photons propagating in a simplified version of such a
background where the sinusoidal variation is replaced by a square wave profile.
We prove that previous results that indicated that charged particles moving
fast in such a background radiate, originally derived assuming that all momenta
involved were much larger than m, hold for long wavelengths too. We also
analyze in detail how the introduction of a magnetic field changes the
properties of photon propagation in such a medium. We briefly comment on
possible astrophysical implications of these results.Comment: 17 pages, 4 figures, revised version includes an extended discussion
on physical implication
Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system phi Persei
Stripped-envelope stars (SESs) form in binary systems after losing mass
through Roche-lobe overflow. They bear astrophysical significance as sources of
UV and ionizing radiation in older stellar populations and, if sufficiently
massive, as stripped supernova progenitors. Binary evolutionary models predict
them to be common, but only a handful of subdwarfs (i.e., SESs) with B-type
companions are known. This could be the result of observational biases
hindering detection, or an incorrect understanding of binary evolution. We
reanalyze the well-studied post-interaction binary phi Persei. Recently, new
data improved the orbital solution of the system, which contains a ~1.2 Msun
SES and a rapidly rotating ~9.6 Msun Be star. We compare with an extensive grid
of evolutionary models using a Bayesian approach and find initial masses of the
progenitor of 7.2+/-0.4 Msun for the SES and 3.8+/-0.4 Msun for the Be star.
The system must have evolved through near-conservative mass transfer. These
findings are consistent with earlier studies. The age we obtain, 57+/-9 Myr, is
in excellent agreement with the age of the alpha Persei cluster. We note that
neither star was initially massive enough to produce a core-collapse supernova,
but mass exchange pushed the Be star above the mass threshold. We find that the
subdwarf is overluminous for its mass by almost an order of magnitude, compared
to the expectations for a helium core burning star. We can only reconcile this
if the subdwarf is in a late phase of helium shell burning, which lasts only
2-3% of the total lifetime as a subdwarf. This could imply that up to ~50 less
evolved, dimmer subdwarfs exist for each system similar to phi Persei. Our
findings can be interpreted as a strong indication that a substantial
population of SESs indeed exists, but has so far evaded detection because of
observational biases and lack of large-scale systematic searches.Comment: 11 pages, 5 figures, accepted for publication in A&
Ultraviolet observations of the X-ray photoionized wind of Cygnus X-1 during X-ray soft/high state
(Shortened) Ultraviolet observations of the black hole X-ray binary Cygnus
X-1 were obtained using the STIS on HSTubble. We detect P Cygni line features
show strong, broad absorption components when the X-ray source is behind the
companion star and noticeably weaker absorption when the X-ray source is
between us and the companion star. We fit the P Cygni profiles using the SEI
method applied to a spherically symmetric stellar wind subject to X-ray
photoionization from the black hole. The Si IV doublet provides the most
reliable estimates of the parameters of the wind and X-ray illumination. The
velocity increases with radius according to
, with and
km s.The microturbulent velocity was
km s. Our fit implies a ratio of X-ray luminosity to wind mass-loss rate
of L, measured at = 4.8. Our
models determine parameters that may be used to estimate the accretion rate
onto the black hole and independently predict the X-ray luminosity. Our
predicted L matches that determined by contemporaneous RXTE ASM remarkably
well, but is a factor of 3 lower than the rate according to
Bondi-Hoyle-Littleton spherical wind accretion. We suggest that some of the
energy of accretion may go into powering a jet.Comment: 34 pages, 21 figures, 4 tables, accepted for publication in Ap
H-alpha Emission Variability in the gamma-ray Binary LS I +61 303
LS I +61 303 is an exceptionally rare example of a high mass X-ray binary
(HMXB) that also exhibits MeV-TeV emission, making it one of only a handful of
"gamma-ray binaries". Here we present H-alpha spectra that show strong
variability during the 26.5 day orbital period and over decadal time scales. We
detect evidence of a spiral density wave in the Be circumstellar disk over part
of the orbit. The H-alpha line profile also exhibits a dramatic emission burst
shortly before apastron, observed as a redshifted shoulder in the line profile,
as the compact source moves almost directly away from the observer. We
investigate several possible origins for this red shoulder, including an
accretion disk, mass transfer stream, and a compact pulsar wind nebula that
forms via a shock between the Be star's wind and the relativistic pulsar wind.Comment: Accepted to Ap
Effects of Metallicity on the Rotation Rates of Massive Stars
Recent theoretical predictions for low metallicity massive stars predict that
these stars should have drastically reduced equatorial winds (mass loss) while
on the main sequence, and as such should retain most of their angular momentum.
Observations of both the Be/(B+Be) ratio and the blue-to-red supergiant ratio
appear to have a metallicity dependence that may be caused by high rotational
velocities. We have analyzed 39 archival Hubble Space Telescope Imaging
Spectrograph (STIS), high resolution, ultraviolet spectra of O-type stars in
the Magellanic Clouds to determine their projected rotational velocities V sin
i. Our methodology is based on a previous study of the projected rotational
velocities of Galactic O-type stars using International Ultraviolet Explorer
(IUE) Short Wavelength Prime (SWP) Camera high dispersion spectra, which
resulted in a catalog of V sin i values for 177 O stars. Here we present
complementary V sin i values for 21 Large Magellanic Cloud and 22 Small
Magellanic Cloud O-type stars based on STIS and IUE UV spectroscopy. The
distribution of V sin i values for O type stars in the Magellanic Clouds is
compared to that of Galactic O type stars. Despite the theoretical predictions
and indirect observational evidence for high rotation, the O type stars in the
Magellanic Clouds do not appear to rotate faster than their Galactic
counterparts.Comment: accepted by ApJ, to appear 20 December 2004 editio
- …