66 research outputs found

    Excess Spin and the Dynamics of Antiferromagnetic Ferritin

    Full text link
    Temperature-dependent magnetization measurements on a series of synthetic ferritin proteins containing from 100 to 3000 Fe(III) ions are used to determine the uncompensated moment of these antiferromagnetic particles. The results are compared with recent theories of macroscopic quantum coherence which explicitly include the effect of this excess moment. The scaling of the excess moment with protein size is consistent with a simple model of finite size effects and sublattice noncompensation.Comment: 4 pages, 3 Postsript figures, 1 table. Submitted to PR

    Quantum Coherence Oscillations in Antiferromagnetic Chains

    Full text link
    Macroscopic quantum coherence oscillations in mesoscopic antiferromagnets may appear when the anisotropy potential creates a barrier between the antiferromagnetic states with opposite orientations of the Neel vector. This phenomenon is studied for the physical situation of the nuclear spin system of eight Xe atoms arranged on a magnetic surface along a chain. The oscillation period is calculated as a function of the chain constant. The environmental decoherence effects at finite temperature are accounted assuming a dipole coupling between the spin chain and the fluctuating magnetic field of the surface. The numerical calculations indicate that the oscillations are damped by a rate ∼(N−1)/τ\sim (N-1)/ \tau, where NN is the number of spins and τ\tau is the relaxation time of a single spin.Comment: 10 pages, Latex, two postscript figures; submitted to Phys. Rev.

    Relaxation and Landau-Zener experiments down to 100 mK in ferritin

    Get PDF
    Temperature-independent magnetic viscosity in ferritin has been observed from 2 K down to 100 mK, proving that quantum tunneling plays the main role in these particles at low temperature. Magnetic relaxation has also been studied using the Landau-Zener method making the system crossing zero resonant field at different rates, alpha=dH/dt, ranging from 10^{-5} to 10^{-3} T/s, and at different temperatures, from 150 mK up to the blocking temperature. We propose a new Tln(Delta H_{eff}/tau_0 alpha) scaling law for the Landau-Zener probability in a system distributed in volumes, where Delta H_{eff} is the effective width of the zero field resonance.Comment: 13 pages, 4 postscript figure

    Magnetic properties in a partially oxidized nanocomposite of Cu-CuCl

    Full text link
    Magnetism of a very thin antiferromagnetic (AFM) surface CuO has been investigated with the partially oxidized nanocomposites of Cu-CuCl, ~ 200 nm. The samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray-excited Auger electron spectroscopy, transmission electron microscope and magnetic measurements. The characterizations indicate that the composites have a core-shell structure. Before the oxidation, it is (Cu)core/(CuCl)shell, and after the oxidation, (Cu)core/(Cu2O+CuCl+minuteCuO)shell. The magnetic measurements have revealed that a ferromagnetic (FM) like open hysteresis exists at the temperature below the freezing point, TF. In the high field region, a paramagnetic (PM) response appears without showing a sign of saturation. Also, the field dependent magnetization (M-H) measurement is PM-like at T > TF. These interesting magnetic properties are evident to arise from the AFM CuO on the outer surface. They are attributed to the uncompensated surface spins of Cu2+ and the effect of surface random potential. More interestingly, the magnetic susceptibility is greatly enhanced in the presence of Cl- anions at T < TF, according to the field-cooled/zero-field-cooled (FC/ZFC) measurements. This further supports the point that the disorder or frustration effect of the impurity would reduce the AFM ordering of CuO and increase the level of uncompensated spins.Comment: 8 pages including 7 figures, Nanotechnology In Pres

    Weak force detection with superposed coherent states

    Get PDF
    We investigate the utility of non classical states of simple harmonic oscillators, particularly a superposition of coherent states, for sensitive force detection. We find that like squeezed states a superposition of coherent states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a significant advantage over a single mode superposition states with the same mean photon number.Comment: 6 pages, no figures: New section added on entangled resources. Changes to discussions and conclusio

    Non-monotonic field-dependence of the ZFC magnetization peak in some systems of magnetic nanoparticles

    Full text link
    We have performed magnetic measurements on a diluted system of gamma-Fe2O3 nanoparticles (~7nm), and on a ferritin sample. In both cases, the ZFC-peak presents a non-monotonic field dependence, as has already been reported in some experiments,and discussed as a possible evidence of resonant tunneling. Within simple assumptions, we derive expressions for the magnetization obtained in the usual ZFC, FC, TRM procedures. We point out that the ZFC-peak position is extremely sensitive to the width of the particle size distribution, and give some numerical estimates of this effect. We propose to combine the FC magnetization with a modified TRM measurement, a procedure which allows a more direct access to the barrier distribution in a field. The typical barrier values which are obtained with this method show a monotonic decrease for increasing fields, as expected from the simple effect of anisotropy barrier lowering, in contrast with the ZFC results. From our measurements on gamma-Fe2O3 particles, we show that the width of the effective barrier distribution is slightly increasing with the field, an effect which is sufficient for causing the observed initial increase of the ZFC-peak temperatures.Comment: LaTeX file 19 pages, 9 postscript figures. To appear in Phys. Rev. B (tentative schedule: Dec.97

    Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism

    Full text link
    The oscillation of tunnel splitting in the biaxial spin system within magnetic field along the anisotropy axis is analyzed within the particle mapping approach, rather than in the (\theta-\phi) spin coherent-state representation. In our mapping procedure, the spin system is transformed into a particle moving in the restricted S1S^1 geometry whose wave function subjects to the boundary condition involving additional phase shift. We obtain the new topological phase that plays the same role as the Wess-Zumino action in spin coherent-state representation. Considering the interference of two possible trajectories, instanton and anti-instanton, we get the identical condition for the field at which tunneling is quenched, with the previous result within spin coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte

    Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles

    Full text link
    In this paper we report magnetic relaxation data for antiferromagnetic alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to 25 K. The average spin value of these particles S=124 and the uniaxial anisotropy constant D=1.6x10^-2 K have been estimated from the experimental values of the blocking temperature and anisotropy field. The observed plateau in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu t) is broken below 5 K, suggesting the occurrence of tunneling from excited states below this temperature.Comment: 4 pages (two columns), 4 figure

    Proton NMR for Measuring Quantum-Level Crossing in the Magnetic Molecular Ring Fe10

    Full text link
    The proton nuclear spin-lattice relaxation rate 1/T1 has been measured as a function of temperature and magnetic field (up to 15 T) in the molecular magnetic ring Fe10. Striking enhancement of 1/T1 is observed around magnetic field values corresponding to a crossing between the ground state and the excited states of the molecule. We propose that this is due to a cross-relaxation effect between the nuclear Zeeman reservoir and the reservoir of the Zeeman levels of the molecule. This effect provides a powerful tool to investigate quantum dynamical phenomena at level crossing.Comment: Four pages, to appear in Phys.Rev.Let

    Macroscopic quantum coherence in mesoscopic ferromagnetic systems

    Full text link
    In this paper we study the Macroscopic Quantum Oscillation (MQO) effect in ferromagnetic single domain magnets with a magnetic field applied along the hard anistropy axis. The level splitting for the ground state, derived with the conventional instanton method, oscillates with the external field and is quenched at some field values. A formula for quantum tunneling at excited levels is also obtained. The existence of topological phase accounts for this kind of oscillation and the corresponding thermodynamical quantities exhibit similar interference effects which resembles to some extent the electron quantum phase interference induced by gauge potential in the Aharonov-Bohm effect and the Θ\Theta -vacuum in Yang-Mills field theory..Comment: 12 pages, 4 figures, to appear in Phys. Rev.
    • …
    corecore