132 research outputs found

    Geodynamics of oroclinal bending: insights from the Mediterranean

    Get PDF
    The Alpine Orogen in the Mediterranean region exhibits a series of orogenic curvatures (oroclines). The evolution of these oroclines is relatively well constrained by a plethora of geophysical and geological data, and therefore, their origin can inform us on the fundamental processes controlling oroclinal bending. Here, a synthesis of the geometry of Mediterranean oroclines, followed by a discussion on their geodynamic origin is presented. The geometrical synthesis is based on a new classification of Mediterranean oroclines, which defines a first-order orocline (Adriatic Orocline) by the general northward-convex shape of the Alpine Orogen from Cyprus to Gibraltar. Superimposed on the limbs of this orocline, are second-, third- and fourth-order oroclines. The major process that led to the formation of the Adriatic Orocline is the indentation of Adria into Europe, whereas second- and third-order oroclines (e.g., Western Mediterranean and Gibraltar oroclines, respectively) were primarily controlled by a combination of trench retreat and slab tearing. It appears, therefore, that the geodynamics of Mediterranean oroclines has been entirely dependent on plate boundary migration and segmentation, as expressed in the interlinked processes of indentation, trench retreat and slab tearing. The relative contribution of specific geodynamic processes, and their maturity, could be inferred from geometrical characteristics, such as the amplitude-to-width ratio, the orientation of the curvature (convex or concave) relative to the convergence vector, and their geometrical relationship with backarc extensional basins (e.g., in the concave side of the orocline). Based on the information from the Mediterranean oroclines, it is concluded that oroclinal bending commonly involves lithospheric-scale processes, and is not restricted to thin-skinned deformation. However, contrary to previous suggestions that assume that the whole lithosphere can buckle, there is no clear evidence that such processes occur in modern tectonic environments

    Devonian crustal stretching in the northern Tasmanides (Australia) and implications for oroclinal bending

    Get PDF
    The Tasmanides in eastern Australia exhibit a number of orogenic curvatures (oroclines), and possibly, a continental-scale bend that defines the continuation of the Delamerian Orogen with the Thomson Orogen. We provide an insight into the geodynamic processes associated with the origin of this orocline. We present interpretations of seismic reflection profiles and potential field data from the Thomson Orogen, which provide information on the crustal architecture and unravel major structures and kinematic relationships. Results show that a large area in the northern Tasmanides is underlain by thinned crust, bounded in the north and south by ~E-W trending geophysical features with apparent sinistral and dextral sense of kinematics, respectively. Within the highly extended crust of the Thomson Orogen, there is evidence for widespread Devonian basins bounded by normal faults. In stark contrast to the southern Tasmanides, where rocks show evidence for an earlier (Silurian) episode of extension and Devonian contractional deformation, no evidence for Silurian synrift sedimentation is observed in the Thomson Orogen. Evidence for ~E-W trending sinistral and dextral crustal-scale shear zones in the northern and southern boundaries of the Thomson Orogen, respectively, may represent tear faults, which were active during the Early Devonian and were possibly accompanied by tear-related magmatism. We suggest that crustal stretching in the northern Tasmanides was associated with Devonian back-arc extension in response to trench retreat, bounded by zones of slab-tearing and crustal segmentation that ultimately led to the development of the Delamerian-Thomson Orocline

    Australian-derived detrital zircons in the Permian-Triassic Gympie terrane (eastern Australia): evidence for an autochthonous origin

    Get PDF
    The Tasmanides in eastern Australia record accretionary processes along the eastern Gondwana margin during the Phanerozoic. The Gympie terrane is the easternmost segment of the Tasmanides, but whether its origin was autochthonous or allochthonous is a matter of debate. We present U-Pb ages of detrital zircons from Permian and Triassic sedimentary rocks of the Gympie terrane with the aim of tracing the source of the sediments and constraining their tectonic relationships with the Tasmanides. Our results show that the Permian stratigraphic units from the Gympie terrane mainly contain Carboniferous and Permian detrital zircons with dominant age peaks at ~263 Ma, ~300 Ma, ~310 Ma, and ~330 Ma. The provenance ages of the Triassic sedimentary units are similar (~256 Ma, ~295 Ma, and ~328 Ma) with an additional younger age peak of ~240 Ma. This pattern of provenance ages from the Gympie terrane is correlative to episodes of magmatism in the adjacent component of the Tasmanides (New England Orogen), indicating that the detrital zircons were dominantly derived from the Australian continent. Given the widespread input of detrital zircons from the Tasmanides, we think that the sedimentary sequence of the Gympie terrane was deposited along the margin of the eastern Australian continent, possibly in association with a Permo-Triassic continental arc system. Our results do not show evidence for an exotic origin of the Gympie terrane, indicating that similarly to the vast majority of the Tasmanides, the Gympie terrane was genetically linked to the Australian continent

    Orogen-perpendicular structures in the central Tasmanides and implications for the Paleozoic tectonic evolution of eastern Australia

    Get PDF
    The curvilinear ~ E-W structures of the southern Thomson Orogen are approximately orthogonal to the general ~ N-S structural trend of the Tasmanides of eastern Australia. The origin of these orogen-perpendicular structures and their implications to tectonic reconstructions of eastern Gondwana are not fully understood. Here we use geophysical data to unravel the geometry, kinematics and possible timing of major structures along the boundary between the Thomson Orogen and the southern Tasmanides (Delamerian and Lachlan orogens). Aeromagnetic data from the southern Thomson Orogen show WNW, E-W and/or ENE trending structural grains, corresponding to relatively long wavelength linear geophysical anomalies. Kinematic analyses indicate strike-slip and transpressional deformation along these geophysically defined faults. Structural relationships indicate that faulting took place during the Benambran (Late Ordovician to Middle Silurian) and Tabberabberan (late Early to Middle Devonian) orogenies. However, some of the described crustal-scale structures may have developed in the Cambrian during the Delamerian Orogeny. Interpretation of deep seismic data shows that the crust of the southern Thomson Orogen is substantially thicker than the Lachlan Orogen crust, which is separated from the Thomson Orogen by the north dipping Olepoloko Fault. A major lithospheric-scale change across this boundary is also indicated by a contrast in seismic velocities. Together with evidence for the occurrence of Delamerian deformation in both the Koonenberry Belt and northeastern Thomson Orogen, and a significant contrast in the width of the northern Tasmanides versus the southern Tasmanides, it appears that the southern Thomson Orogen may represent the locus of orogen-perpendicular segmentation, which may have occurred in response to along-strike plate boundary variations

    Episodic behavior of Gondwanide deformation in eastern Australia: Insights from the Gympie Terrane

    Get PDF
    The mechanisms that drove Permian-Triassic orogenesis in Australia and throughout the Cordilleran-type Gondwanan margin is a subject of debate. Here we present field-based results on the structural evolution of the Gympie Terrane (eastern Australia), with the aim of evaluating its possible role in triggering widespread orogenesis. We document several deformation events (D–D) in the Gympie Terrane and show that the earliest deformation, D, occurred only during the final pulse of orogenesis (235–230\ua0Ma) within the broader Gondwanide Orogeny. In addition, we found no evidence for a crustal suture, suggesting that terrane accretion was not the main mechanism behind deformation. Rather, the similar spatiotemporal evolution of Permian-Triassic orogenic belts in Australia, Antarctica, South Africa, and South America suggest that the Gondwanide Orogeny was more likely linked to large-scale tectonic processes such as plate reorganization. In the context of previous work, our results highlight a number of spatial and temporal variations in pulses of deformation in eastern Australia, suggesting that shorter cycles of deformation occurred at a regional scale within the broader episode of the Gondwanide Orogeny. Similarly to the Cenozoic evolution of the central and southern Andes, we suggest that plate coupling and orogenic cycles in the Late Paleozoic to Early Mesozoic Gondwanide Orogeny have resulted from the superposition of mechanisms acting at a range of scales, perhaps contributing to the observed variations in the intensity, timing, and duration of deformation phases within the orogenic belt

    Late Cenozoic intraplate faulting in eastern Australia

    Get PDF
    The intensity and tectonic origin of late Cenozoic intraplate deformation in eastern Australia is relatively poorly understood. Here we show that Cenozoic volcanic rocks in southeast Queensland have been deformed by numerous faults. Using gridded aeromagnetic data and field observations, structural investigations were conducted on these faults. Results show that faults have mainly undergone strike-slip movement with a reverse component, displacing Cenozoic volcanic rocks ranging in ages from similar to 31 to similar to 21 Ma. These ages imply that faulting must have occurred after the late Oligocene. Late Cenozoic deformation has mostly occurred due to the reactivation of major faults, which were active during episodes of basin formation in the Jurassic-Early Cretaceous and later during the opening of the Tasman and Coral Seas from the Late Cretaceous to the early Eocene. The wrench reactivation of major faults in the late Cenozoic also gave rise to the occurrence of brittle subsidiary reverse strike-slip faults that affected Cenozoic volcanic rocks. Intraplate transpressional deformation possibly resulted from far-field stresses transmitted from the collisional zones at the northeast and southeast boundaries of the Australian plate during the late Oligocene-early Miocene and from the late Miocene to the Pliocene. These events have resulted in the hitherto unrecognized reactivation of faults in eastern Australia. (C) 2014 Elsevier Ltd. All rights reserved

    Crustal and upper mantle response to lithospheric segmentation in the northern Apennines

    Get PDF
    Lithospheric tear faults are expected to develop in response to along-strike variations in the rates of slab rollback. However, the exact geometry of such structures and their crustal and upper mantle expressions are still debated. We present an analysis of seismic, structural and morphological features that possibly represent the expression of lithospheric segmentation in the northern Apennines. Geophysical observations show evidence for the existence of a discontinuity in the lithospheric structure beneath the northern Apennines, characterized by a change in the spatial distribution of intermediate-depth seismicity, along-strike variations in the pattern of crustal seismicity, and a bend in the Moho topography. The near-surface expression of this discontinuity is associated with an abrupt change in the morphology and exhumation history of the northern Apennines in the proximity of the Livorno-Sillaro Lineament. We interpret these features as evidence for incipient tearing of the lithospheric slab beneath the northern Apennines, marking the boundary between domains that underwent contrasting styles of lithospheric deformation, which are either associated with different rates of slab rollback or a transition from underplating to retreat. We suggest that similar types of structures may play a crucial role in the evolution of convergent plate boundaries, allowing segmentation of orogenic belts and facilitating the development of orogenic curvatures, Ultimately, further tearing along such structures could potentially lead to the occurrence of tear–related magmatism and the formation of slab windows

    Continental rifts: Complex dissipative patterns from simple boundary conditions

    Get PDF
    We present numerical models that investigate the development of crustal and mantle detachments during lithospheric extension. Our models, which consider an elasto-visco-plastic lithosphere, explore the relationship between stored and dissipated energies during deformation. We apply the fundamental thermodynamic assumptions of minimization of Helmholtz free energy (i.e. stored energy) and maximization of dissipated energy, and include in the models feedback effects modulated by temperature, such as shear heating, that lead to strain localization. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30–40 km) and an intermediate heat flow (60–70mWm-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantleto crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup

    Phylogenetic Analysis Informed by Geological History Supports Multiple, Sequential Invasions of the Mediterranean Basin by the Angiosperm Family Araceae

    Get PDF
    Despite the remarkable species richness of the Mediterranean flora and its well-known geological history, few studies have investigated its temporal and spatial origins. Most importantly, the relative contribution of geological processes and long-distance dispersal to the composition of contemporary Mediterranean biotas remains largely unknown. We used phylogenetic analyses of sequences from six chloroplast DNA markers, Bayesian dating methods, and ancestral area reconstructions, in combination with paleogeographic, paleoclimatic, and ecological evidence, to elucidate the time frame and biogeographic events associated with the diversification of Araceae in the Mediterranean Basin. We focused on the origin of four species, Ambrosina bassii, Biarum dispar, Helicodiceros muscivorus, Arum pictum, subendemic or endemic to Corsica, Sardinia, and the Balearic Archipelago. The results support two main invasions of the Mediterranean Basin by the Araceae, one from an area connecting North America and Eurasia in the Late Cretaceous and one from the Anatolian microplate in western Asia during the Late Eocene, thus confirming the proposed heterogeneous origins of the Mediterranean flora. The subendemic Ambrosina bassii and Biarum dispar likely diverged sympatrically from their widespread Mediterranean sister clades in the Early-Middle Eocene and Early-Middle Miocene, respectively. Combined evidence corroborates a relictual origin for the endemic Helicodiceros muscivorus and Arum pictum, the former apparently representing the first documented case of vicariance driven by the initial splitting of the Hercynian belt in the Early Oligocene. A recurrent theme emerging from our analyses is that land connections and interruptions, caused by repeated cycles of marine transgressions-regressions between the Tethys and Paratethys, favored geodispersalist expansion of biotic ranges from western Asia into the western Mediterranean Basin and subsequent allopatric speciation at different points in time from the Late Eocene to the Late Oligocen

    GEODYNAMICS OF THE KAZAKHSTAN OROCLINE, CENTRAL ASIA

    Get PDF
    Curved mountain belts, commonly referred as to oroclines that result from bending of quasi-linear orogenic belts, have fascinated generations of geologists. Such structures are widely recognized in modern and ancient orogens, and are fundamentally important for understanding geodynamics of convergent plate boundaries. However, how and why orogenic belts become bent has been in debate. Here we investigate the Kazakhstan Orocline in the Central Asian Orogenic Belt with an aim at understanding the geodynamics of oroclinal bending in accretionary orogens.Curved mountain belts, commonly referred as to oroclines that result from bending of quasi-linear orogenic belts, have fascinated generations of geologists. Such structures are widely recognized in modern and ancient orogens, and are fundamentally important for understanding geodynamics of convergent plate boundaries. However, how and why orogenic belts become bent has been in debate. Here we investigate the Kazakhstan Orocline in the Central Asian Orogenic Belt with an aim at understanding the geodynamics of oroclinal bending in accretionary orogens
    • …
    corecore