9 research outputs found

    Osteoporotic bone fractures: intramedullary augmentation and hybrid osteosynthesis

    No full text
    The increasing number of people who are living longer and have a far more active lifestyle is inevitably associated with greater numbers of fractures. Stabilization of these fractures in older patients with plates and screws is complicated by fragile bone substance, especially in osteoporotic bone, since osteosynthesis with a conventional plate depends exclusively on the holding power of the screws. Therefore, treatment requires new stabilization technologies designed for these specific tasks. A small diameter polyethylene terephthalate (PET, Dacron (R)) balloon is delivered in a minimally invasive fashion and placed within the canal, transversing the fracture. Once positioned, the balloon is expanded with a liquid monomer to fill the medullary canal. The liquid monomer is then rapidly cured using visible blue light, forming a patient-customized intramedullary implant that stabilizes the entire length of the bone in contact with the implant. The described intramedullary implant can be easily drilled in any position or location, providing a substantial increase in screw holding power. Thus, a major advantage of the technique is the possibility to augment the newly formed balloon nail with a conventional plate and screws at the primary stabilization or at any later time

    Photodynamic intramedullary bone stabilization of pathological fractures

    No full text
    Pathological fractures of long tubular bones are stabilized with conventional implants. Essentially, plates and intramedullary nails are used for stabilization and are two different techniques, which compete with each other with respect to the surgical treatment. A large number of such means of osteosynthesis are commercially available but are primarily focused on acute fractures in otherwise biologically healthy bones. The pathological fracture or the treatment of impending pathological fractures due to metastatic osteolysis differs from the treatment of healthy bones in some fundamental aspects. The characteristics of pathological fractures make the development of new technologies that meet the specific needs of both the patient and the surgeon desirable. A new approach in treatment is stabilization of internal long bone fractures by the use of a cylindrical balloon implant, which is introduced into the bone via a small proximal or distal hole and then filled and expanded to a much larger diameter with a liquid monomer. The curing process is initiated with the application of blue light forming a rigid implant by polymerization (IlluminOss (TM)). Many of the well-known disadvantages of conventional implants can be eliminated with this technology. Specifically, with respect to the irregular shape of the natural medullary canal it is possible to completely fill the medullary canal of the tubular bone. The filling of the canal provides torsional stability without the use of interlocking screws. Similarly, the use of the balloon technique enables minimally invasive surgery and furthermore permits the additive use of conventional metallic plates whenever necessary. The new balloon techniques show high primary stability in the treatment of pathological shaft fractures. In particular cases, the addition of a supplemental plate osteosynthesis is recommended

    Effective management of bone fractures with the IlluminOss® photodynamic bone stabilization system: initial clinical experience from the European Union registry

    No full text
    The IlluminOss® system (IS) uses a light-curable polymer contained within an inflatable balloon catheter, forming a patient customized intramedullary implant. A registry was established in Germany and The Netherlands to prospectively collect technical and clinical outcomes in patients treated with IS for fractures of the phalange, metacarpal, radius, ulna, distal radius, fibula, clavicle and/or olecranon. Humeral, femoral, tibial and pelvic fractures were included under compassionate use. Procedural success included successful placement of the device at the target fracture site and achievement of fracture stabilization. Clinical and radiographic assessments were made postoperatively through 12 months. One hundred thirty two patients (149 fractures) were enrolled with most fractures (85%) resulting from low-energy trauma. Simple fractures predominated (47%) followed by complex (23%) and wedge (16%) fractures. Procedural success was achieved in all patients and no implants required removal or revision. Normal range of motion was realized in 87% of fractures. Radiographically, there was substantial cortical bridging, total dissolution of the fracture line, and complete fracture healing. Across a variety of fracture types, the IS provides a safe and effective approach for rapid healing and functional recovery

    Biomechanical comparison of different fixation methods in metatarsal shaft fractures: A cadaver study

    No full text
    Background: Various fixation methods are available for the operative treatment of metatarsal shaft fractures: Kirschner wire, Titanium elastic nail, plate, or an intramedullary bone stabilization system within a balloon catheter. The aim of this study was to compare the stability of these techniques. Methods: 72 metatarsals II to V from fresh frozen human cadaver feet were used. A shaft fracture was performed and fixed with a 1.6-mm Kirschner wire, a 1.5-mm Titanium elastic nail, a locking 6-hole-plate, or an intramedullary bone stabilization system. In a cantilever configuration, the head of the metatarsals was loaded statically (2 mm/min until failure; all groups) or cyclically (0 to 20 N for 1000 cycles with 10 mm/s, after 1000 cycles 2 mm/min until failure; plate and bone stabilization system). Findings: The mean failure strength for static loading was 17 N for Kirschner wire, 13 N for Titanium elastic nail, 73 N for plate and 34 N for the bone stabilization system (P < .01). For cyclic loading, the mean cycle of failure was 1000 for plate and 961 for the bone stabilization system (P = .76). The mean failure strength after cyclic loading was 73 N for plate and 48 N for the bone stabilization system (P = .03). Interpretation: Stability differs depending on the fixation method, with a plate showing the greatest stability and Kirschner wire or Titanium elastic nail the least. The stability of the bone stabilization system for fixing metatarsal shaft fractures is intermediate

    Biomechanical comparison of different fixation methods in tibiotalocalcaneal arthrodesis: a cadaver study

    No full text
    Abstract Background Various fixation methods are available for tibiotalocalcaneal arthrodesis: nail, plate, or screws. An intramedullary bone stabilization system within a balloon catheter has not previously been used in tibiotalocalcaneal arthrodesis. The aim of this study was to compare the stability of these techniques. Methods Twenty-four lower legs from fresh-frozen human cadavers were used. Tibiotalocalcaneal arthrodesis was performed with a retrograde nail, a lateral locking plate, three cancellous screws, or an intramedullary bone stabilization system. The ankles were loaded cyclically in plantarflexion and dorsiflexion. Results For cyclic loading at 125 N, the mean range of motion was 1.7 mm for nail, 2.2 mm for plate, 6.0 mm for screws, and 9.0 mm for the bone stabilization system (P < .01). For cyclic loading at 250 N, the mean range of motion was 4.4 mm for nail, 7.5 mm for plate, 12.1 mm for screws, and 14.6 mm for the bone stabilization system (P < .01). The mean cycle of failure was 4191 for nail, 3553 for plate, 3725 for screws, and 2132 for the bone stabilization system (P = .10). Conclusions The stability of the tibiotalocalcaneal arthrodesis differs depending on the fixation method, with nail or plate showing the greatest stability and the bone stabilization system the least. When three screws are used for tibiotalocalcaneal arthrodesis, the stability is intermediate. As the biomechanical stability of the bone stabilization system is low, it cannot be recommended for tibiotalocalcaneal arthrodesis

    Biomechanical comparison of different fixation methods in tibiotalocalcaneal arthrodesis

    No full text
    Background\bf Background Various fixation methods are available for tibiotalocalcaneal arthrodesis: nail, plate, or screws. An intramedullary bone stabilization system within a balloon catheter has not previously been used in tibiotalocalcaneal arthrodesis. The aim of this study was to compare the stability of these techniques. Methods\bf Methods Twenty-four lower legs from fresh-frozen human cadavers were used. Tibiotalocalcaneal arthrodesis was performed with a retrograde nail, a lateral locking plate, three cancellous screws, or an intramedullary bone stabilization system. The ankles were loaded cyclically in plantarflexion and dorsiflexion. Results\bf Results For cyclic loading at 125 N, the mean range of motion was 1.7 mm for nail, 2.2 mm for plate, 6.0 mm for screws, and 9.0 mm for the bone stabilization system (P\it P < .01). For cyclic loading at 250 N, the mean range of motion was 4.4 mm for nail, 7.5 mm for plate, 12.1 mm for screws, and 14.6 mm for the bone stabilization system (P\it P < .01). The mean cycle of failure was 4191 for nail, 3553 for plate, 3725 for screws, and 2132 for the bone stabilization system (P\it P = .10). Conclusions\bf Conclusions The stability of the tibiotalocalcaneal arthrodesis differs depending on the fixation method, with nail or plate showing the greatest stability and the bone stabilization system the least. When three screws are used for tibiotalocalcaneal arthrodesis, the stability is intermediate. As the biomechanical stability of the bone stabilization system is low, it cannot be recommended for tibiotalocalcaneal arthrodesis
    corecore