224 research outputs found

    Ruby films as surface temperature and pressure sensors

    Get PDF
    Epitaxial films of chromium doped alumina, 0.3 microns in thickness, were grown on single crystal sapphire substrates for use as surface thermometers. Curve fitting was performed on the R1 and R2 fluorescence peaks, and the line widths and peak shifts were used to determine the temperature of the surface during sliding contact with a variety of plastic bearings. Temperatures could be determined with a repeatability of 2 degrees C, and adequate signal for temperature determination could be obtained in 30-100 msec. in dots that were 200 microns in diameter, using a 0.25 watt argon laser. Both average (nominal) and local temperature increases were measured. Pressure-induced shifts could be treated as an error to the temperature determination. © 1999 Optical Society of America

    Orientation of optically trapped nonspherical birefringent particles

    Get PDF
    While the alignment and rotation of microparticles in optical traps have received increased attention recently, one of the earliest examples has been almost totally neglected the alignment of particles relative to the beam axis, as opposed to about the beam axis. However, since the alignment torques determine how particles align in a trap, they are directly relevant to practical applications. Lysozyme crystals are an ideal model system to study factors determining the orientation of nonspherical birefringent particles in a trap. Both their size and their aspect ratio can be controlled by the growth parameters, and their regular shape makes computational modeling feasible. We show that both external shape and internal birefringence anisotropy contribute to the alignment torque. Three-dimensionally trapped elongated objects either align with their long axis parallel or perpendicular to the beam axis depending on their size. The shape-dependent torque can exceed the torque due to birefringence, and can align negative uniaxial particles with their optic axis parallel to the electric field, allowing an application of optical torque about the beam axis.Comment: 5 pages, 5 figure

    Growth of crystals in optical tweezers

    Get PDF
    We report here on the use of optical tweezers in the growth and manipulation of protein and inorganic crystals. Sodium chloride and hen egg-white lysozyme crystals were grown in a batch process, and then seeds from the solution were introduced into the optical tweezers. The regular and controllable shape and the known optical birefringence in these structures allowed a detailed study of the orientation effects in the beam due to both polarization and gradient forces. Additionally, we determined that the laser tweezers could be used to suspend a crystal for three-dimensional growth under varying conditions. Studies included increasing the protein concentration, thermal cycling, and a diffusion-induced increase in precipitant concentration. Preliminary studies on the use of the tweezers to create a localized seed for growth from polyethylene oxide solutions are also reported

    Towards in-fiber silicon photonics

    No full text
    We review the recent advancements in the fabrication and application of silicon optical fibers. Particular focus is placed on novel materials and device designs for use in optical signal processing systems

    Rotating Optical Tweezers

    Get PDF
    Several methods to rotate and align microscopic particles controllably have been developed. Control of the orientation of a trapped particle allows full three dimensional manipulation, whereas rotating particles are tools for the development of optically-driven micromachines. It has been shown that the orientation of an object in the laser trap depends on its birefringence as well as on its shape. The effect of shape is often referred to as form-birefringence. We report on the trapping, rotation, and in-situ growth of birefringent tetragonal lysozyme crystals in optical tweezers operating at a wavelength of 1064 nm. Variation of the temperature, pH and lysozyme concentration of the solution during growth was used to alter the size, as well as the length to width ratio of the crystals, and hence their orientation in the tweezers. Thus this system serves as a model to study the relative importance of birefringence versus form-birefringence for particle orientation. Crystals with the optical axis skewed or perpendicular to the trapping-beam axis could be rotated by changing the orientation of linearly polarized light. We observed spontaneous spinning of some asymmetric crystals in the presence of linearly polarized light, due to radiation pressure effects. Addition of protein to the solution in the tweezers permitted real-time observation of crystal growth

    Towards crystallization using optical tweezers

    Get PDF
    Recently we have shown that protein crystals could be grown while they were three-dimensionally trapped by optical tweezers. This permitted studies of modifications of single crystals while gradually changing the conditions in the growing solution. Furthermore it allowed the crystals to grow far away from container walls favoring high quality crystal growth. Many protein crystals themselves consist of fairly large molecules, with sizes up to tens of nanometers. Here we present experiments studying the effect of optical trapping potentials on large molecules, with the aim to explore ways to further enhance crystal growth. For this purpose we extended our tweezers setup with a specially developed detection system allowing us to monitor changes in the molecule concentration of a solution. Using polyethylene oxide (PEO) molecule solutions we were able to demonstrate that the trapping potential of an optical trap is sufficient to collect large single molecules. Our results show that the optical trap induces an increase in the molecule concentration in the focal region. As expected only molecules above a certain molecular weight could be manipulated, and the concentration in the focal region depended on the power of the trapping laser. The ability to locally increase the concentration of molecules may be useful in assisting nucleation of crystals. ©2006 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only

    Low loss tapered polysilicon core fibers

    No full text
    We have fabricated small core polysilicon waveguides by tapering bulk, as-drawn silicon optical fibers. The taper process acts to improve the local crystallinity of the core, resulting in a significant reduction in the material los

    All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre

    Get PDF
    Originally developed for metrology, optical frequency combs are becoming increasingly pervasive in a wider range of research topics including optical communications, spectroscopy, and radio or microwave signal processing. However, application demands in these fields can be more challenging as they require compact sources with a high tolerance to temperature variations that are capable of delivering flat comb spectra, high power per tone, narrow linewidth and high optical signal-to-noise ratio. This work reports the generation of a flat, high power frequency comb in the telecom band using a 17 mm fully-integrated silicon core fibre as a parametric mixer. Our all-fibre, cavity-free source combines the material benefits of planar waveguide structures with the advantageous properties of fibre platforms to achieve a 30 nm bandwidth comb source containing 143 tones with 30 dB OSNR over the entire spectral region

    Vapor Deposited Cr-doped ZnS Thin Films: Towards Optically Pumped Mid-Infrared Waveguide Lasers

    Get PDF
    Compact, affordable mid-IR lasers require the development of gain materials in waveguide form. We report on the high vacuum deposition of Cr:ZnS films with concentration ranging from 1018-1020 dopants/cm3 . At low concentrations, films display well-isolated absorption associated with substitutional Cr2+ ions in the lattice. Spatial modulation of the dopant concentration suppresses the absorption associated with this substitution. Lateral crystallite sizes less than 30 nm are associated with the lowest substrate temperatures (\u3c50 °C) used during deposition, and waveguide losses as low as 8dB/cm are observed. These materials are promising candidates as gain media for fabrication of waveguide mid-IR lasers

    Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres

    No full text
    Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core
    • …
    corecore