39 research outputs found

    The LXeGRIT Compton Telescope Prototype: Current Status and Future Prospects

    Get PDF
    LXeGRIT is the first prototype of a novel concept of Compton telescope, based on the complete 3-dimensional reconstruction of the sequence of interactions of individual gamma rays in one position sensitive detector. This balloon-borne telescope consists of an unshielded time projection chamber with an active volume of 400 cm2×7^2 \times 7 cm filled with high purity liquid xenon. Four VUV PMTs detect the fast xenon scintillation light signal, providing the event trigger. 124 wires and 4 anodes detect the ionization signals, providing the event spatial coordinates and total energy. In the period 1999 -- 2001, LXeGRIT has been extensively tested both in the laboratory and at balloon altitude, and its response in the MeV region has been thoroughly characterized. Here we summarize some of the results on pre-flight calibration, event reconstruction techniques, and performance during a 27 hour balloon flight on October 4 -- 5. We further present briefly the on-going efforts directed to improve the performance of this prototype towards the requirements for a base module of a next-generation Compton telescope

    Low-mass dark matter search results from full exposure of PandaX-I experiment

    Full text link
    We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1\;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6\%. With a fiducial liquid xenon target mass of 54.0\,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10\,GeV/c2^2, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.Comment: v3 as accepted by PRD. Minor update in the text in response to referee comments. Separating Fig. 11(a) and (b) into Fig. 11 and Fig. 12. Legend tweak in Fig. 9(b) and 9(c) as suggested by referee, as well as a missing legend for CRESST-II legend in Fig. 12 (now Fig. 13). Same version as submitted to PR
    corecore