759 research outputs found

    Relativistic Attosecond Electron Bunches from Laser-Illuminated Droplets

    Full text link
    The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles which depend on the ratios of droplet radius to wavelength and plasma frequency to laser frequency. The mechanism behind the multi-MeV attosecond electron bunch generation is investigated using Mie theory. It is shown that the angular distribution and the high electron energies are due to a parameter-sensitive, time-dependent local field enhancement at the droplet surface.Comment: 4 pages, 5 figures, REVTeX-styl

    Two center multipole expansion method: application to macromolecular systems

    Full text link
    We propose a new theoretical method for the calculation of the interaction energy between macromolecular systems at large distances. The method provides a linear scaling of the computing time with the system size and is considered as an alternative to the well known fast multipole method. Its efficiency, accuracy and applicability to macromolecular systems is analyzed and discussed in detail.Comment: 23 pages, 7 figures, 1 tabl

    Selective decay by Casimir dissipation in fluids

    Full text link
    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in 3D flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in \cite{SaBa1981,SaBa1985}. Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parameterizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies

    Formation and Evolution of Singularities in Anisotropic Geometric Continua

    Full text link
    Evolutionary PDEs for geometric order parameters that admit propagating singular solutions are introduced and discussed. These singular solutions arise as a result of the competition between nonlinear and nonlocal processes in various familiar vector spaces. Several examples are given. The motivating example is the directed self assembly of a large number of particles for technological purposes such as nano-science processes, in which the particle interactions are anisotropic. This application leads to the derivation and analysis of gradient flow equations on Lie algebras. The Riemann structure of these gradient flow equations is also discussed.Comment: 38 pages, 4 figures. Physica D, submitte

    Coherent Excitation of a Two-Level Atom driven by a far off-resonant Classical Field: Analytical Solutions

    Get PDF
    We present an analytical treatment of coherent excitation of a Two-Level Atom driven by a far-off resonant classical field. A class of pulse envelope is obtained for which this problem is exactly solvable. The solutions are given in terms of Heun function which is a generalization of the Hypergeometric function. The degeneracy of Heun to Hypergeometric equation can give all the exactly solvable pulse shapes of Gauss Hypergeometric form, from the generalized pulse shape obtained here. We discuss the application of the results obtained to the generation of XUV.Comment: 9 Pages, 8 Figures. Accepted for Physical Review A as a regular articl

    Semiclassical Particle Spectrum of Double Sine-Gordon Model

    Full text link
    We present new theoretical results on the spectrum of the quantum field theory of the Double Sine Gordon model. This non-integrable model displays different varieties of kink excitations and bound states thereof. Their mass can be obtained by using a semiclassical expression of the matrix elements of the local fields. In certain regions of the coupling-constants space the semiclassical method provides a picture which is complementary to the one of the Form Factor Perturbation Theory, since the two techniques give information about the mass of different types of excitations. In other regions the two methods are comparable, since they describe the same kind of particles. Furthermore, the semiclassical picture is particularly suited to describe the phenomenon of false vacuum decay, and it also accounts in a natural way the presence of resonance states and the occurrence of a phase transition.Comment: 32 pages, latex, 8 figure

    Speech rhythm: a metaphor?

    Get PDF
    Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep ‘prominence gradient’, i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a ‘stress-timed’ language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow ‘syntagmatic contrast’ between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and that it is this analogical process which allows speech to be matched to external rhythms

    Defining the molecular signatures of Achilles tendinopathy and anterior cruciate ligament ruptures: A whole-exome sequencing approach

    Get PDF
    Musculoskeletal soft tissue injuries are complex phenotypes with genetics being one of many proposed risk factors. Case-control association studies using the candidate gene approach have predominately been used to identify risk loci for these injuries. However, the ability to identify all risk conferring variants using this approach alone is unlikely. Therefore, this study aimed to further define the genetic profile of these injuries using an integrated omics approach involving whole exome sequencing and a customised analyses pipeline. The exomes of ten exemplar asymptomatic controls and ten exemplar cases with Achilles tendinopathy were individually sequenced using a platform that included the coverage of the untranslated regions and miRBase miRNA genes. Approximately 200 000 variants were identified in the sequenced samples. Previous research was used to guide a targeted analysis of the genes encoding the tenascin-C (TNC) glycoprotein and the α1 chain of type XXVII collagen (COL27A1) located on chromosome 9. Selection of variants within these genes were; however, not predetermined but based on a tiered filtering strategy. Four variants in TNC (rs1061494, rs1138545, rs2104772 and rs1061495) and three variants in the upstream COL27A1 gene (rs2567706, rs2241671 and rs2567705) were genotyped in larger Achilles tendinopathy and anterior cruciate ligament (ACL) rupture sample groups. The CC genotype of TNC rs1061494 (C/T) was associated with the risk of Achilles tendinopathy (p = 0.018, OR: 2.5 95% CI: 1.2–5.1). Furthermore, the AA genotype of the TNC rs2104772 (A/T) variant was significantly associated with ACL ruptures in the female subgroup (p = 0.035, OR: 2.3 95% CI: 1.1–5.5). An inferred haplotype in the TNC gene was also associated with the risk of Achilles tendinopathy. These results provide a proof of concept for the use of a customised pipeline for the exploration of a larger genomic dataset. This approach, using previous research to guide a targeted analysis of the data has generated new genetic signatures in the biology of musculoskeletal soft tissue injuries.IS

    B\"acklund transformations for the second Painlev\'e hierarchy: a modified truncation approach

    Full text link
    The second Painlev\'e hierarchy is defined as the hierarchy of ordinary differential equations obtained by similarity reduction from the modified Korteweg-de Vries hierarchy. Its first member is the well-known second Painlev\'e equation, P2. In this paper we use this hierarchy in order to illustrate our application of the truncation procedure in Painlev\'e analysis to ordinary differential equations. We extend these techniques in order to derive auto-B\"acklund transformations for the second Painlev\'e hierarchy. We also derive a number of other B\"acklund transformations, including a B\"acklund transformation onto a hierarchy of P34 equations, and a little known B\"acklund transformation for P2 itself. We then use our results on B\"acklund transformations to obtain, for each member of the P2 hierarchy, a sequence of special integrals.Comment: 12 pages in LaTeX 2.09 (uses ioplppt.sty), to appear in Inverse Problem
    • 

    corecore