85 research outputs found
In Vivo Measurement of Brain GABA Concentrations by Magnetic Resonance Spectroscopy in Smelters Occupationally Exposed to Manganese
Background: Exposure to excessive manganese (Mn) levels is known to induce psychiatric and motor disorders including parkinsonian symptoms. Therefore finding a reliable means for early detection of Mn neurotoxicity is desirable. Objectives: Our goal was to study whether in-vivo brain levels of gamma-aminobutyric acid (GABA), N-acetylaspartate (NAA) and other brain metabolites in smelters were altered as a consequence of Mn exposure. Methods: T1-weighted MRI was used to visualize Mn deposition in the brain. Magnetic resonance spectroscopy (MRS) was used to quantify concentrations of NAA, glutamate and other brain metabolites in globus pallidus, putamen, thalamus, and frontal cortex from a well-established cohort of 10 male Mn-exposed smelters and 10 male age-matched control subjects. The MEGA-PRESS MRS sequence was used to determine GABA levels in a region encompassing the thalamus and adjacent parts of the basal ganglia ("GABA-VOI"). Results: Seven out of ten exposed subjects showed clear T1-hyperintense signals in the globus pallidus indicating Mn accumulation. We found a significant increase (82%; p=0.014) of GABA/tCr in the GABA-VOI of Mn-exposed subjects, as well as a distinct decrease (9%, p=0.04) of NAA/tCr in frontal cortex that strongly correlated (R= - 0.93, p<0.001) with cumulative Mn exposure. Conclusions: We demonstrated elevated GABA levels in the thalamus and adjacent basal ganglia and decreased frontal cortex NAA levels, indicating neuronal dysfunction in a brain area not primarily targeted by Mn. Therefore, the non-invasive in vivo MRS measurement of GABA and NAA may prove to be a powerful tool for detecting presymptomatic effects of Mn neurotoxicity
A Novel G Protein-Coupled Receptor of Schistosoma mansoni (SmGPR-3) Is Activated by Dopamine and Is Widely Expressed in the Nervous System
Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have been identified in schistosomes and little is known about their roles in the biology of the worm. Here we describe a novel Schistosoma mansoni G protein-coupled receptor (named SmGPR-3) that was cloned, expressed heterologously and shown to be activated by dopamine, a well established neurotransmitter of the schistosome nervous system. SmGPR-3 belongs to a new clade of “orphan” amine-like receptors that exist in schistosomes but not the mammalian host. Further analysis of the recombinant protein showed that SmGPR-3 can also be activated by other catecholamines, including the dopamine metabolite, epinine, and it has an unusual antagonist profile when compared to mammalian receptors. Confocal immunofluorescence experiments using a specific peptide antibody showed that SmGPR-3 is abundantly expressed in the nervous system of schistosomes, particularly in the main nerve cords and the peripheral innervation of the body wall muscles. In addition, we show that dopamine, epinine and other dopaminergic agents have strong effects on the motility of larval schistosomes in culture. Together, the results suggest that SmGPR-3 is an important neuronal receptor and is probably involved in the control of motor activity in schistosomes. We have conducted a first analysis of the structure of SmGPR-3 by means of homology modeling and virtual ligand-docking simulations. This investigation has identified potentially important differences between SmGPR-3 and host dopamine receptors that could be exploited to develop new, parasite-selective anti-schistosomal drugs
Disease-Toxicant Interactions in Manganese Exposed Huntington Disease Mice: Early Changes in Striatal Neuron Morphology and Dopamine Metabolism
YAC128 Huntington's disease (HD) transgenic mice accumulate less manganese (Mn) in the striatum relative to wild-type (WT) littermates. We hypothesized that Mn and mutant Huntingtin (HTT) would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl2-4H2O (50 mg/kg) on days 0, 3 and 6. Striatal medium spiny neuron (MSN) morphology, as well as levels of dopamine (DA) and its metabolites (which are known to be sensitive to Mn-exposure), were analyzed at 13 weeks (7 days from initial exposure) and 16 weeks (28 days from initial exposure). No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology
Syndromics: A Bioinformatics Approach for Neurotrauma Research
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings
Visual imperception in brain-injured adults: multifaceted measures.
Visual imperception denotes the disorders of perceptual functioning commonly associated with unilateral brain injury. Typically the same half of the visual fields of both eyes are affected on the side opposite to that of the brain injury. The disorder may have a sensory or an attentional basis or both, moreover, the patient is often not aware of the problem. The condition interferes with daily activities including reading and navigating abilities, and it increases the likelihood that a person will have accidents. Thus, it becomes an obstacle to rehabilitation. Two comprehensive tests for visual imperception, Search-A-Word (SAW) and Speeded Reading of Word Lists (SRWL), were administered to a large sample of brain-injured and nonbrain-injured adult rehabilitation patients. Measures included: search times for left- and right-side targets, words missed at either margin, completion rates, errors on displaced words, and within-span errors. Right hemisphere brain injury was reliably associated with errors on the left side; left hemisphere brain injury was associated with overall poor performance. A factor analysis of performance measures revealed three major independent factors: (1) left spatial hemi-imperception, (2) lateral scanning dysfunction, and (3) left foveal hemi-imperception. These findings support a neurosensory-based view of imperception, especially in brain-injured persons. Finally, differential assessment of these problems is essential for comprehensive rehabilitation
- …