26 research outputs found

    Flux–Profile Relationships in the Stable Boundary Layer—A Critical Discussion

    Get PDF
    Flux–profile relationships are crucial for parametrizing surface fluxes of momentum and heat, that are of central relevance for applications such as climate modelling and weather forecast. Nevertheless, their functional forms are still under discussion, and a generally accepted formulation does not exist yet. We reviewed the four main formulations proposed in the literature so far and assessed how they affect the theoretical behaviour of the kinematic heat flux (H0) and the temperature scale (T*) in the stable boundary layer, as well as their consequences on the existence of critical values for both the gradient and the flux Richardson numbers. None of them turned out to be fully consistent with the literature published so far, with two of them leading to very unreliable expressions for both H0 and T*. All considered, a convincing description of flux–profile relationships still needs to be found and seems to represents a considerable challenge

    Surface and Aerodynamic Parameters Estimation for Urban and Rural Areas

    Get PDF
    Numerical weather prediction models require an accurate parametrization of the energy budget at the air-ground interface, that can be obtained only through long-term atmospheric boundary layer measurements at different spatial and temporal scales. Despite their importance, such measurements are still scarce even in well-characterized areas. In this paper, a three-year dataset from four micrometeorological stations run by the Regional Agency for Environmental Protection of Lazio was analyzed to estimate albedo, zero-displacement height, roughness length and surface properties over Rome and its suburbs, characterizing differences and interconnections between urban, suburban and rural areas of the same municipality. The integral albedo coefficient at the zenith for the urban station was found to be almost twice that for suburban and rural stations. The zero-displacement height of the urban site was strongly dependent on wind direction, with values varying between 12.0 and 17.8 m, while the roughness length (≈1.5 m) was almost independent of upwind direction, but it was significantly higher than the typical values calculated for rural stations (≈0.4 m). The apparent thermal capacities and thermal conductivity at all the non-urban sites were in fair agreement with each other and typical of soils with relatively low water content, as expected for a relatively dry Mediterranean area like Rome, while the apparent thermal diffusivity reflected the presence of different soil types

    Genomic and physiological resilience in extreme environments are associated with a secure attachment style

    Get PDF
    Understanding individual capability to adjust to protracted confinement and isolation may inform adaptive plasticity and disease vulnerability/resilience, and may have long-term implications for operations requiring prolonged presence in distant and restricted environments. Individual coping depends on many different factors encompassing psychological dispositional traits, endocrine reactivity and their underlying molecular mechanisms (e.g. gene expression). A positive view of self and others (secure attachment style) has been proposed to promote individual resilience under extreme environmental conditions. Here, we tested this hypothesis and investigated the underlying molecular mechanisms in 13 healthy volunteers confined and isolated for 12 months in a research station located 1670 km away from the south geographic pole on the Antarctic Plateau at 3233 m above sea level. Study participants, stratified for attachment style, were characterised longitudinally (before, during and after confinement) for their psychological appraisal of the stressful nature of the expedition, diurnal fluctuations in endocrine stress reactivity, and gene expression profiling (transcriptomics). Predictably, a secure attachment style was associated with reduced psychological distress and endocrine vulnerability to stress. In addition, while prolonged confinement and isolation remarkably altered overall patterns of gene expression, such alteration was largely reduced in individuals characterised by a secure attachment style. Furthermore, increased resilience was associated with a reduced expression of genes involved in energy metabolism (mitochondrial function and oxidative phosphorylation). Ultimately, our data indicate that a secure attachment style may favour individual resilience in extreme environments and that such resilience can be mapped onto identifiable molecular substrates

    First Results of the “Carbonaceous Aerosol in Rome and Environs (CARE)” Experiment: Beyond Current Standards for PM10

    Get PDF
    In February 2017 the “Carbonaceous Aerosol in Rome and Environs (CARE)” experiment was carried out in downtown Rome to address the following specific questions: what is the color, size, composition, and toxicity of the carbonaceous aerosol in the Mediterranean urban background area of Rome? The motivation of this experiment is the lack of understanding of what aerosol types are responsible for the severe risks to human health posed by particulate matter (PM) pollution, and how carbonaceous aerosols influence radiative balance. Physicochemical properties of the carbonaceous aerosol were characterised, and relevant toxicological variables assessed. The aerosol characterisation includes: (i) measurements with high time resolution (min to 1–2 h) at a fixed location of black carbon (eBC), elemental carbon (EC), organic carbon (OC), particle number size distribution (0.008–10 μ m), major non refractory PM1 components, elemental composition, wavelength-dependent optical properties, and atmospheric turbulence; (ii) 24-h measurements of PM10 and PM2.5 mass concentration, water soluble OC and brown carbon (BrC), and levoglucosan; (iii) mobile measurements of eBC and size distribution around the study area, with computational fluid dynamics modeling; (iv) characterisation of road dust emissions and their EC and OC content. The toxicological assessment includes: (i) preliminary evaluation of the potential impact of ultrafine particles on lung epithelia cells (cultured at the air liquid interface and directly exposed to particles); (ii) assessment of the oxidative stress induced by carbonaceous aerosols; (iii) assessment of particle size dependent number doses deposited in different regions of the human body; (iv) PAHs biomonitoring (from the participants into the mobile measurements). The first experimental results of the CARE experiment are presented in this paper. The objective here is to provide baseline levels of carbonaceous aerosols for Rome, and to address future research directions. First, we found that BC and EC mass concentration in Rome are larger than those measured in similar urban areas across Europe (the urban background mass concentration of eBC in Rome in winter being on average 2.6 ± 2.5 μ g · m − 3 , mean eBC at the peak level hour being 5.2 (95% CI = 5.0–5.5) μ g · m − 3 ). Then, we discussed significant variations of carbonaceous aerosol properties occurring with time scales of minutes, and questioned on the data averaging period used in current air quality standard for PM 10 (24-h). Third, we showed that the oxidative potential induced by aerosol depends on particle size and composition, the effects of toxicity being higher with lower mass concentrations and smaller particle size. Albeit this is a preliminary analysis, findings reinforce the need for an urgent update of existing air quality standards for PM 10 and PM 2.5 with regard to particle composition and size distribution, and data averaging period. Our results reinforce existing concerns about the toxicity of carbonaceous aerosols, support the existing evidence indicating that particle size distribution and composition may play a role in the generation of this toxicity, and remark the need to consider a shorter averaging period (<1 h) in these new standards

    Caratterizzazione dello strato limite planetario con diversi strumenti di telerilevamento

    No full text
    L'altezza di mescolamento, definita come la quota dello strato adiacente alla superficie entro il quale gli inquinanti ed i costituenti atmosferici vengono rimescolati da processi turbolenti, è uno dei parametri chiave per la caratterizzazione della bassa atmosfera, il monitoraggio ambientale e le previsioni meteorologiche a breve scala. Nel seminario verranno illustrati e discussi confronti tra diverse stime di questa grandezza, ottenute mediante un ceilometer CL31 della Vaisala, un sodar doppler a tre assi e un lidar elastico automatico, specificamente progettato e costruito per lo studio della bassa atmosfera ( da circa 60 m fino alla torpopausa). I due set di dati presi in considerazione, entrambi acquisiti in ambienti costiero, hanno inoltre permesso di evidenziare l'evoluzione dello strato durante lo sviluppo della circolazione locale di brezza, e di caratterizzare la forza ed il flusso di quest'ultima mediante semplici relazioni di scala

    Caratterizzazione dello strato limite planetario con diversi strumenti di telerilevamento

    No full text
    L'altezza di mescolamento, definita come la quota dello strato adiacente alla superficie entro il quale gli inquinanti ed i costituenti atmosferici vengono rimescolati da processi turbolenti, è uno dei parametri chiave per la caratterizzazione della bassa atmosfera, il monitoraggio ambientale e le previsioni meteorologiche a breve scala. Nel seminario verranno illustrati e discussi confronti tra diverse stime di questa grandezza, ottenute mediante un ceilometer CL31 della Vaisala, un sodar doppler a tre assi e un lidar elastico automatico, specificamente progettato e costruito per lo studio della bassa atmosfera ( da circa 60 m fino alla torpopausa). I due set di dati presi in considerazione, entrambi acquisiti in ambienti costiero, hanno inoltre permesso di evidenziare l'evoluzione dello strato durante lo sviluppo della circolazione locale di brezza, e di caratterizzare la forza ed il flusso di quest'ultima mediante semplici relazioni di scala
    corecore