36 research outputs found

    Caenorhabditis elegans as chemical screening tool to find compounds and targets against neuromuscular diseases

    No full text
    Les techniques de criblage actuelles (in vitro et in silico) sont dépendantes des efforts menés en biologie médicinale pour identifier des cibles biologiques pertinentes ; cibles difficiles à définir pour les maladies génétiques dites "perte de fonction". De plus, les composés issus de ces cribles s'avèrent souvent inefficaces et/ou toxiques une fois confrontés à la complexité physiologique d'un organisme entier. Pour contourner ce problème, nous proposons d'utiliser le nématode C. elegans, notamment pour des maladies répondant aux critères suivants : i) physiopathologie complexe et/ou mal comprise excluant le développement à court terme de médicaments sur une base rationnelle, ii) peu d’espoir de thérapie génique/cellulaire à court terme, iii) conservation chez C. elegans du gène relié à la maladie humaine et induisant un phénotype exploitable une fois inactivé. Nous démontrons ici que ce petit nématode permet de tester, à moindre coût, un grand nombre de composés chimiques tout en conservant la complexité physiologique d'un animal entier. De plus, la souplesse génétique de cet animal permet d'apporter rapidement des informations sur le mode d'action des composés identifiés. Ainsi, en plus du but initial visant à identifier des molécules bioactives à intérêt thérapeutique, cette approche peut permettre de dégager de nouvelles cibles moléculaires utiles pour l'industrie chimique, et cruciales pour la recherche de traitements contre les maladies perte de fonction. Finalement, nous présentons comment mettre en place une telle stratégie, notamment pour la myopathie de Duchenne, l'amyotrophie spinale et le syndrome de Schwartz-Jampel. Enfin, nous présentons les résultats obtenus lors des différentes campagnes de criblage, les validations des molécules les plus prometteuses et les travaux effectués pour tenter de comprendre leur mode d'action chez le nématode.Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limits its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans is gaining momentum as screening chemical tool. This tiny worm combines genetic amenability, low cost, and culture conditions that are compatible with large-scale screens. Its main advantage is to allow high-throughput screening in a whole-animal context. Moreover, its use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. Here, we introduce this approach with the Duchenne Muscular Dystrophy, the Spinal Muscular Dystrophy and the Schwartz-Jampel syndrome. We present the methodology used with each model to screen up to 7,000 compounds and the results of these screening campaigns. We further present the validation of our best hits and try to understand their mechanism of action

    C. elegans, un outil de criblage pour la recherche de traitements contre les maladies rares

    No full text
    Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limits its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans is gaining momentum as screening chemical tool. This tiny worm combines genetic amenability, low cost, and culture conditions that are compatible with large-scale screens. Its main advantage is to allow high-throughput screening in a whole-animal context. Moreover, its use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. Here, we introduce this approach with the Duchenne Muscular Dystrophy, the Spinal Muscular Dystrophy and the Schwartz-Jampel syndrome. We present the methodology used with each model to screen up to 7,000 compounds and the results of these screening campaigns. We further present the validation of our best hits and try to understand their mechanism of action.Les techniques de criblage actuelles (in vitro et in silico) sont dépendantes des efforts menés en biologie médicinale pour identifier des cibles biologiques pertinentes ; cibles difficiles à définir pour les maladies génétiques dites "perte de fonction". De plus, les composés issus de ces cribles s'avèrent souvent inefficaces et/ou toxiques une fois confrontés à la complexité physiologique d'un organisme entier. Pour contourner ce problème, nous proposons d'utiliser le nématode C. elegans, notamment pour des maladies répondant aux critères suivants : i) physiopathologie complexe et/ou mal comprise excluant le développement à court terme de médicaments sur une base rationnelle, ii) peu d’espoir de thérapie génique/cellulaire à court terme, iii) conservation chez C. elegans du gène relié à la maladie humaine et induisant un phénotype exploitable une fois inactivé. Nous démontrons ici que ce petit nématode permet de tester, à moindre coût, un grand nombre de composés chimiques tout en conservant la complexité physiologique d'un animal entier. De plus, la souplesse génétique de cet animal permet d'apporter rapidement des informations sur le mode d'action des composés identifiés. Ainsi, en plus du but initial visant à identifier des molécules bioactives à intérêt thérapeutique, cette approche peut permettre de dégager de nouvelles cibles moléculaires utiles pour l'industrie chimique, et cruciales pour la recherche de traitements contre les maladies perte de fonction. Finalement, nous présentons comment mettre en place une telle stratégie, notamment pour la myopathie de Duchenne, l'amyotrophie spinale et le syndrome de Schwartz-Jampel. Enfin, nous présentons les résultats obtenus lors des différentes campagnes de criblage, les validations des molécules les plus prometteuses et les travaux effectués pour tenter de comprendre leur mode d'action chez le nématode

    Caenorhabditis elegans as chemical screening tool to find compounds and targets against neuromuscular diseases

    Get PDF
    Les techniques de criblage actuelles (in vitro et in silico) sont dépendantes des efforts menés en biologie médicinale pour identifier des cibles biologiques pertinentes ; cibles difficiles à définir pour les maladies génétiques dites "perte de fonction". De plus, les composés issus de ces cribles s'avèrent souvent inefficaces et/ou toxiques une fois confrontés à la complexité physiologique d'un organisme entier. Pour contourner ce problème, nous proposons d'utiliser le nématode C. elegans, notamment pour des maladies répondant aux critères suivants : i) physiopathologie complexe et/ou mal comprise excluant le développement à court terme de médicaments sur une base rationnelle, ii) peu d’espoir de thérapie génique/cellulaire à court terme, iii) conservation chez C. elegans du gène relié à la maladie humaine et induisant un phénotype exploitable une fois inactivé. Nous démontrons ici que ce petit nématode permet de tester, à moindre coût, un grand nombre de composés chimiques tout en conservant la complexité physiologique d'un animal entier. De plus, la souplesse génétique de cet animal permet d'apporter rapidement des informations sur le mode d'action des composés identifiés. Ainsi, en plus du but initial visant à identifier des molécules bioactives à intérêt thérapeutique, cette approche peut permettre de dégager de nouvelles cibles moléculaires utiles pour l'industrie chimique, et cruciales pour la recherche de traitements contre les maladies perte de fonction. Finalement, nous présentons comment mettre en place une telle stratégie, notamment pour la myopathie de Duchenne, l'amyotrophie spinale et le syndrome de Schwartz-Jampel. Enfin, nous présentons les résultats obtenus lors des différentes campagnes de criblage, les validations des molécules les plus prometteuses et les travaux effectués pour tenter de comprendre leur mode d'action chez le nématode.Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limits its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans is gaining momentum as screening chemical tool. This tiny worm combines genetic amenability, low cost, and culture conditions that are compatible with large-scale screens. Its main advantage is to allow high-throughput screening in a whole-animal context. Moreover, its use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. Here, we introduce this approach with the Duchenne Muscular Dystrophy, the Spinal Muscular Dystrophy and the Schwartz-Jampel syndrome. We present the methodology used with each model to screen up to 7,000 compounds and the results of these screening campaigns. We further present the validation of our best hits and try to understand their mechanism of action

    Neurexins in autism and schizophrenia-a review of patient mutations, mouse models and potential future directions

    No full text
    Mutations in the family of neurexins (NRXN1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard, numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function (GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants identified in human studies and on the mouse models currently deployed, and offers suggestions for future research

    Effective heritable gene knockdown in zebrafish using synthetic microRNAs

    No full text
    Although zebrafish is used to model human diseases through mutational and morpholino-based knockdown approaches, there are currently no robust transgenic knockdown tools. Here we investigate the knockdown efficiency of three synthetic miRNA-expressing backbones and show that these constructs can downregulate a sensor transgene with different degrees of potency. Using this approach, we reproduce spinal muscular atrophy (SMA) in zebrafish by targeting the smn1 gene. We also generate different transgenic lines, with severity and age of onset correlated to the level of smn1 inhibition, recapitulating for the first time the different forms of SMA in zebrafish. These lines are proof-of-concept that miRNA-based approaches can be used to generate potent heritable gene knockdown in zebrafish

    Motor neuron-expressed microRNAs 218 and their enhancers are nested within introns of Slit2/3 genes

    No full text
    miR218-1 and miR218-2 are embedded in introns of SLIT2 and SLIT3, respectively, an arrangement conserved throughout vertebrate genomes. Both miR218 genes are predicted to be transcribed in the same orientation as their host genes and were assumed to be spliced from Slit2/3 primary transcripts. In zebrafish miR218 is active in cranial nerve motor nuclei and spinal cord motor neurons, while slit2 and slit3 are expressed predominantly in the midline. This differential expression pattern suggested independent regulation of miR218 genes by distinct enhancers. We tested conserved noncoding elements for regulatory activity by reporter gene transgenesis in zebrafish. Two human enhancers, 76 kb and 130 kb distant from miR218-2, were identified that drove GFP expression in zebrafish in an almost complete miR218 expression pattern. In the zebrafish slit3 locus, two enhancers with identical activity were discovered. In human SLIT2 one enhancer 52 kb upstream of miR218-1 drove an expression pattern very similar to the enhancers of miR218-2. This establishes that miR218-1/-2 regulatory units are nested within SLIT2/3 and that they are duplicates of an ancestral single locus. Due to the strong activity of the enhancers, unique transgenic lines were created that facilitate morphological and gene functional genetic experiments in motor neurons

    Tissue-specific models of spinal muscular atrophy confirm a critical role of SMN in motor neurons from embryonic to adult stages

    No full text
    Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism

    miR-124 Contributes to the functional maturity of microglia

    No full text
    During early development of the central nervous system (CNS), a subset of yolk-sac derived myeloid cells populate the brain and provide the seed for the microglial cell population, which will self-renew throughout life. As development progresses, individual microglial cells transition from a phagocytic amoeboid state through a transitional morphing phase into the sessile, ramified, and normally nonphagocytic microglia observed in the adult CNS under healthy conditions. The molecular drivers of this tissue-specific maturation profile are not known. However, a survey of tissue resident macrophages identified miR-124 to be expressed in microglia. In this study, we used transgenic zebrafish to overexpress miR-124 in the mpeg1 expressing yolk-sac-derived myeloid cells that seed the microglia. In addition, a systemic sponge designed to neutralize the effects of miR-124 was used to assess microglial development in a miR-124 loss-of-function environment. Following the induction of miR-124 overexpression, microglial motility and phagocytosis of apoptotic cells were significantly reduced. miR-124 overexpression in microglia resulted in the accumulation of residual apoptotic cell bodies in the optic tectum, which could not be achieved by miR-124 overexpression in differentiated neurons. Conversely, expression of the miR-124 sponge caused an increase in the motility of microglia and transiently rescued motility and phagocytosis functions when activated simultaneously with miR-124 overexpression. This study provides in vivo evidence that miR-124 activity has a key role in the development of functionally mature microglia
    corecore