5 research outputs found
Contrast media volume is significantly related to patient lung volume during CT pulmonary angiography when employing a patient-specific contrast protocol
Aim: The purpose of this study is to investigate the relationship between contrast media volume and patient lung volume when employing a patient-specific contrast media formula during pulmonary computed tomography angiography (CTA).
Materials and methods: IRB approved this retrospective study. CTA of the pulmonary arteries was performed on 200 patients with suspected pulmonary embolism (PE). The contrast media volume (CMV) was calculted by employing a patient-specific contrast formula. Lung volume was quantified employing semi-automated lung software that calculated lung volumes (intellispace -Philips). The mean cross-sectional opacification profile of central and peripheral pulmonary arteries and veins were measured for each patient and arteriovenous contrast ratio (AVCR) calculated for each lung segment. Mean body mass index (BMI) and lung volume were quantified. Receiver operating (ROC) and visual grading characteristics (VGC) measured reader confidence in emboli detection and image quality respectively. Inter and intra-observer variations were investigated employing Cohen’s kappa methodology.
Results: Results showed that the mean pulmonary arterial opacification of the main pulmonary circulation (343.88±73HU), right lung; upper (316.51±23HU), middle (312.5±39HU) and lower (315.23±65HU) lobes and left; upper (318.76±83HU), and lower (321.91±12HU) lobes. The mean venous opacification of all pulmonary veins was below 182±72HU. AVCR was observed at all anatomic locations (p<0.0002) where this ratio was calculated. Moreover, larger volumes of contrast significantly correlated with larger lung volumes (r=0.89, p<0.03) and radiation dose (p<0.03). VGC and ROC analysis demonstrated increased area under the curve: 0.831 and 0.99 respectively (p<0.02). Inter-observer variation was observed as excellent (κ = 0.71).
Conclusion: We conclude that increased CMV is significantly correlated to increased patient lung volume and radiation dose when employing a patient-specific contrast formula. The effects patient habitus is highlighted
Lung density in the trajectory path — a strong indicator of patients sustaining a pneumothorax during CT-guided lung biopsy
Introduction: The purpose is to evaluate the prognostic significance of lung parenchymal density during percutaneous coaxial cutting needle lung biopsy (PNLB). Materials and methods: Retrospective analysis of 179 consecutive patients (106 males, 73 females; mean age 59.16 ± 16.34 years) undergoing PNLB was included. Mean lobar parenchymal lung density, mean densities anterior to the lesion and posterior to the chest wall in the needle trajectory path were measured in HU. Lesion location and needle trajectory were also measured. Fisher’s exact test and Chi-square test were conducted to analyze the categorical variables. ANOVA test was done to examine continuous and normally distributed variables. Statistical significance was considered when p < 0.05. Results: Mean lobar parenchymal lung density (p < 0.05) and mean parenchymal lung density relative to the needle trajectory path were below -800 HU in patients who sustained a pneumothorax. Increase in the number of pleural passes was significantly associated with the risk of patients having pneumothorax (p < 0.05). The mean distance from the skin to the lesion and needle trajectory angle were not statistically different among patients with and without pneumothorax (p > 0.05). Conclusion: Lobar parenchymal density and lung parenchymal density anterior to the lesion and posterior to the chest wall in the needle trajectory path could be used as predicting parameters in patients undergoing PNLB who sustained a pneumothorax. These findings can help interventional radiologist further assess risk of pneumothorax when preforming such procedure
The Use of Stem Cells in Burn Wound Healing: A Review
Burn wound healing involves a series of complex processes which are subject to intensive investigations to improve the outcomes, in particular, the healing time and the quality of the scar. Burn injuries, especially severe ones, are proving to have devastating effects on the affected patients. Stem cells have been recently applied in the field to promote superior healing of the wounds. Not only have stem cells been shown to promote better and faster healing of the burn wounds, but also they have decreased the inflammation levels with less scar progression and fibrosis. This review aims to highlight the beneficial therapeutic effect of stem cells in burn wound healing and to discuss the involved pathways and signaling molecules. The review covers various types of burn wound healing like skin and corneal burns, along with the alternative recent therapies being studied in the field of burn wound healing. The current reflection of the attitudes of people regarding the use of stem cells in burn wound healing is also stated
The Use of Stem Cells in Burn Wound Healing: A Review
Burn wound healing involves a series of complex processes which are subject to intensive investigations to improve the outcomes, in particular, the healing time and the quality of the scar. Burn injuries, especially severe ones, are proving to have devastating effects on the affected patients. Stem cells have been recently applied in the field to promote superior healing of the wounds. Not only have stem cells been shown to promote better and faster healing of the burn wounds, but also they have decreased the inflammation levels with less scar progression and fibrosis. This review aims to highlight the beneficial therapeutic effect of stem cells in burn wound healing and to discuss the involved pathways and signaling molecules. The review covers various types of burn wound healing like skin and corneal burns, along with the alternative recent therapies being studied in the field of burn wound healing. The current reflection of the attitudes of people regarding the use of stem cells in burn wound healing is also stated
Lung Density in the Trajectory Path—A Strong Indicator of Patients Sustaining a Pneumothorax during CT-Guided Lung Biopsy
Introduction: The purpose is to evaluate the prognostic significance of lung parenchymal density during percutaneous coaxial cutting needle lung biopsy (PNLB). Materials and methods: Retrospective analysis of 179 consecutive patients (106 males, 73 females; mean age 59.16 ± 16.34 years) undergoing PNLB was included. Mean lobar parenchymal lung density, mean densities anterior to the lesion and posterior to the chest wall in the needle trajectory path were measured in HU. Lesion location and needle trajectory were also measured. Fisher’s exact test and Chi-square test were conducted to analyze the categorical variables. ANOVA test was done to examine continuous and normally distributed variables. Statistical significance was considered when p < 0.05. Results: Mean lobar parenchymal lung density (p < 0.05) and mean parenchymal lung density relative to the needle trajectory path were below -800 HU in patients who sustained a pneumothorax. Increase in the number of pleural passes was significantly associated with the risk of patients having pneumothorax (p < 0.05). The mean distance from the skin to the lesion and needle trajectory angle were not statistically different among patients with and without pneumothorax (p > 0.05). Conclusion: Lobar parenchymal density and lung parenchymal density anterior to the lesion and posterior to the chest wall in the needle trajectory path could be used as predicting parameters in patients undergoing PNLB who sustained a pneumothorax. These findings can help interventional radiologist further assess risk of pneumothorax when preforming such procedure