10 research outputs found

    Controlling metal ion migration in contaminated groundwater with Iraqi clay barriers for water resource protection

    Get PDF
    This study investigates the effectiveness of using Iraqi clay as a low-permeability layer to prevent the migration of lead and nickel ions in groundwater-aquifers. Tests of batch operation have been conducted to determine the optimal conditions for removing Pb2+ ions, which were found to be 120 minutes of contact time, a pH of 5, 0.12 g of clay per 100 mL of solution, and an agitation of 250 rpm. These conditions resulted in a 90% removal efficiency for a 50 mg L−1 initial concentration of lead ions. To remove nickel ions with an efficiency of 80%, the optimal conditions were 60 minutes of contact time, a pH of 6, 12 g of clay per 100 mL of solution, and an agitation of 250 rpm. Several sorption models were evaluated, and the Langmuir formula was found to be the most effective. The highest sorption capacities were 1.75 and 137 mg g−1 for nickel and lead ions, respectively. The spread of metal ions was simulated using finite element analysis in the COMSOL multiphysics simulation software, taking into account the presence of a clay barrier. The results showed that the barrier creates low-discharge zones along the down-gradient of the barrier, reducing the rate of pollutant migration to protect the water sources

    Correlation between vitamin D levels and apoptosis in geriatric patients infected with hepatitis C virus genotype 4

    No full text
    Sami A Gabr,1,2 Ahmad H Alghadir,1 Ahmed A Allam,3,4 Jamaan Ajarem,3 Ghada Al-Basher,3 Mostafa A Abdel-Maksoud,3 Ayman A Ghfar,5 Alaa Aboud6 1Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt; 3Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; 4Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt; 5Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia; 6Internal Endemic Medicine Department, College of Medicine, Beni-Suef University, Beni Suef, Egypt Background: Vitamin D levels play a pivotal role in most biological processes and differ according to age. A deficiency of vitamin D in chronic hepatitis C (CHC) patients has been shown to be linked with the severity of liver fibrosis, but little is known about the mechanism of this association. Objective: In this study, we evaluate the potential interrelation between vitamin D levels, oxidative stress, and apoptosis, based on liver fibrosis in geriatric patients infected with hepatitis C virus (HCV) genotype 4. Subjects and methods: A total of 120 adult individuals aged 30–68 years were recruited in this study. Of these, 20 healthy subjects (15 men and five women) with a mean age of 48.3±6.1 years were selected as controls, and 100 patients with a mean age of 47.8±4.9 years with chronic HCV (CHC) who had undergone liver biopsy (80 men and 20 women) were included in this study. Based on liver radiographic (computed tomography, magnetic resonance imaging) and histological Metavir system analyses, the CHC patients were classified into three groups: asymptomatic CHC carriers (n=30), fibrosis (n=25), and cirrhosis (n=45). HCV RNA, HCV genotypes, inflammatory cytokines AFP and TNFα, 25-hydroxyvitamin D (25[OH]D) levels, apoptotic markers single-stranded DNA (ssDNA) and soluble Fas (sFas), and oxidative stress markers nitric oxide (NO) and total antioxidant capacity (TAC) were estimated by using molecular, immunoassay, and colorimetric techniques. Results: Approximately 30% of the study population (n=30) were diagnosed as asymptomatic CHC carriers, and 70% of the study population (n=70) had severe fibrosis; these were classified into fibrosis and cirrhosis. There was a significant reduction in 25(OH)D levels and TAC activity, along with an increase in levels of NO, AFP, TNFα, ssDNA, and sFas in fibrosis and cirrhosis subjects compared with those of asymptomatic CHC carriers and health controls. The deficiency in 25(OH)D levels correlated positively with sFas, ssDNA, AFP, TNFα, NO, and TAC, and negatively with age, sex, liver function, body mass index, homeostatic model assessment – insulin resistance, HCV RNA, and viral load. Significant intercorrelation was reported between serum 25(OH)D concentrations and apoptotic and oxidative markers, which suggested progression of liver pathogenesis and fibrogenesis via oxidative and apoptotic mechanisms. Conclusion: The data showed that vitamin D status was significantly correlated with pathogenesis and fibrogenesis of the liver in geriatric patients infected with HCV genotype 4. The deficiency in 25(OH)D levels was shown to have a pivotal role in the pathogenesis of liver via apoptotic, oxidative stress, and inflammatory mechanistic pathways. The data point to adequate vitamin D levels being recommended for a good response to treatment strategies, especially in older CHC patients. Keywords: 25(OH)D, HCV, apoptosis, Fas antigen, liver fibrosis, oxidative stress, geriatric

    Remediation of Silty Clay Soil Contaminated with Metal Ions by Electric Field Technology with the Support of Acidic Injection Wells

    No full text
    This work aims to propose a new approach for enhancement the reclamation of soil spiked with metal ions, specifically lead and chromium by applying electro-kinetic method. Different tests were carried out on Iraqi silty clay soil that had been polluted with either lead or chromium in concentration of 1500 mg/kg (single system) and in the form of binary system consisted of lead and chromium at concentrations of 750 mg/kg for each metal. The tests have been conducted with 7 days processing time and 1-V/cm voltage gradient. In order to improve the electro-kinetic remediation ability to remove the aforementioned metal ions from Iraqi soil, acetic acid enhanced by two injection wells were applied. Experimental outcomes proved that the lead and chromium can be removed with efficiencies of 18.5 and 12.5%, respectively for tests performed using the distilled water. Utilizing 1-M acetic acid led to an increase in the removal efficiencies to 37 and 21.5%, respectively. However, addition of two injection wells in combination of an acetic acid result in significant increasing in the removal to be ≤ 59%. Finally, the removals of lead and chromium have values of 42 and 28% respectively in the binary system for acetic acid and two injection wells. These values are lower than the efficiencies for same metals in the single system operating in the same conditions, which may be due to metals competing for desorption from the soil
    corecore