6 research outputs found

    TIM-3/Gal-9 interaction affects glucose and lipid metabolism in acute myeloid leukemia cell lines

    Get PDF
    Introduction: T-cell immunoglobulin and mucin domain-3 (TIM-3) is a transmembrane molecule first identified as an immunoregulator. This molecule is also expressed on leukemic cells in acute myeloid leukemia and master cell survival and proliferation. In this study, we aimed to explore the effect of TIM-3 interaction with its ligand galectin-9 (Gal-9) on glucose and lipid metabolism in AML cell lines. Methods: HL-60 and THP-1 cell lines, representing M3 and M5 AML subtypes, respectively, were cultured under appropriate conditions. The expression of TIM-3 on the cell surface was ascertained by flow cytometric assay. We used real-time PCR to examine the mRNA expression of GLUT-1, HK-2, PFKFB-3, G6PD, ACC-1, ATGL, and CPT-1A; colorimetric assays to measure the concentration of glucose, lactate, GSH, and the enzymatic activity of G6PD; MTT assay to determine cellular proliferation; and gas chromatography–mass spectrometry (GC-MS) to designate FFAs. Results: We observed the significant upregulated expression of GLUT-1, HK-2, PFKFB-3, ACC-1, CPT-1A, and G6PD and the enzymatic activity of G6PD in a time-dependent manner in the presence of Gal-9 compared to the PMA and control groups in both HL-60 and THP-1 cell lines (p > 0.05). Moreover, the elevation of extracellular free fatty acids, glucose consumption, lactate release, the concentration of cellular glutathione (GSH) and cell proliferation were significantly higher in the presence of Gal-9 compared to the PMA and control groups in both cell lines (p < 0.05). Conclusion: TIM-3/Gal-9 ligation on AML cell lines results in aerobic glycolysis and altered lipid metabolism and also protects cells from oxidative stress, all in favor of leukemic cell survival and proliferation.Isfahan University of Medical Science

    TIM-3/Gal-9 interaction affects glucose and lipid metabolism in acute myeloid leukemia cell lines

    Get PDF
    IntroductionT-cell immunoglobulin and mucin domain-3 (TIM-3) is a transmembrane molecule first identified as an immunoregulator. This molecule is also expressed on leukemic cells in acute myeloid leukemia and master cell survival and proliferation. In this study, we aimed to explore the effect of TIM-3 interaction with its ligand galectin-9 (Gal-9) on glucose and lipid metabolism in AML cell lines.MethodsHL-60 and THP-1 cell lines, representing M3 and M5 AML subtypes, respectively, were cultured under appropriate conditions. The expression of TIM-3 on the cell surface was ascertained by flow cytometric assay. We used real-time PCR to examine the mRNA expression of GLUT-1, HK-2, PFKFB-3, G6PD, ACC-1, ATGL, and CPT-1A; colorimetric assays to measure the concentration of glucose, lactate, GSH, and the enzymatic activity of G6PD; MTT assay to determine cellular proliferation; and gas chromatography–mass spectrometry (GC-MS) to designate FFAs.ResultsWe observed the significant upregulated expression of GLUT-1, HK-2, PFKFB-3, ACC-1, CPT-1A, and G6PD and the enzymatic activity of G6PD in a time-dependent manner in the presence of Gal-9 compared to the PMA and control groups in both HL-60 and THP-1 cell lines (p &gt; 0.05). Moreover, the elevation of extracellular free fatty acids, glucose consumption, lactate release, the concentration of cellular glutathione (GSH) and cell proliferation were significantly higher in the presence of Gal-9 compared to the PMA and control groups in both cell lines (p &lt; 0.05).ConclusionTIM-3/Gal-9 ligation on AML cell lines results in aerobic glycolysis and altered lipid metabolism and also protects cells from oxidative stress, all in favor of leukemic cell survival and proliferation

    Differentially expressed inflammatory cell death-related genes and the serum levels of IL-6 are determinants for severity of coronaviruses diseases-2019 (COVID-19)

    No full text
    Background: Inflammatory cell death, PANoptosis, has been suggested to orchestrate the lymphocyte decrement among coronavirus disease-2019 (COVID-19) patients. The main aim of this study was to examine the differences in the expression of key genes related to inflammatory cell death and their correlation with lymphopenia in the mild and severe types of COVID-19 patients. Materials and Methods: Eighty-eight patients (36 to 60 years old) with mild (n = 44) and severe (n = 44) types of COVID-19 were enrolled. The expression of key genes related to apoptosis (FAS-associated death domain protein, FADD), pyroptosis (ASC (apoptosis-associated speck-like protein containing caspase activation and recruitment domains (CARD)), the adapter protein ASC binds directly to caspase-1 and is critical for caspase-1 activation in response to a broad range of stimuli), and necroptosis (mixed lineage kinase domain-like, MLKL) genes were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay, and compared between the groups. The serum levels of interleukin (IL)-6 were measured by enzyme-linked immunosorbent assay (ELISA) assay. Results: A major increase in the expression of FADD, ASC, and MLKL-related genes in the severe type of patients was compared to the mild type of patients. The serum levels of IL-6 similarly indicated a significant increase in the severe type of the patients. A significant negative correlation was detected between the three genes' expression and the levels of IL-6 with the lymphocyte counts in both types of COVID-19 patients. Conclusion: Overall, the main regulated cell-death pathways are likely to be involved in lymphopenia in COVID-19 patients, and the expression levels of these genes could potentially predict the patients' outcome

    PD-1/PD-L1 Interaction Regulates BCL2, KI67, BAX, and CASP3, Altering Proliferation, Survival, and Apoptosis in Acute Myeloid Leukemia

    No full text
    Programmed death ligand-1 (PD-L1) is a pivotal inhibitory checkpoint ligand known to induce T-cell exhaustion via interaction with the programmed death‑1 (PD‑1) receptor. Beyond this, PDL1’s intrinsic signaling pathways within cancer cells warrant further exploration. This study aims to elucidate the effect of PD-L1 stimulation on the proliferation, survival, and apoptosis of acute myeloid leukemia (AML) cell lines. Two human AML cell lines, HL-60 and THP-1 were cultured and treated with phorbol 12-myristate 13-acetate (PMA) to induce PD-L1overexpression. Post-treatment PD-L1 expression was confirmed via flow cytometry. Subsequently, cell surface PD-L1 was stimulated using a recombinant PD-1, 24 hours post-PMA treatment. The expression alterations in pivotal genes including BCL2, MKI67, BAX, and CASP3 were monitored using quantitative real-time polymerase chain reaction 24 and 48 hours post-treatment. Additionally, annexin-V through flow cytometry. Findings reveal that PD-L1 stimulation augments AML cell proliferation and survival by enhancing MKI67 and BCL2 expressions while concurrently inhibiting cell apoptosis due to decreased BAX and CASP3 expression following PD-L1 stimulation. Notably, stimulated cells expressed exhibited reduced annexin-V compared to control cells. This study underscores that PD-L1 stimulation fosters AML cell proliferation and survival while impeding cell apoptosis. The results hold potential implications for targeting PD-L1 in AML treatment strategies

    Unfolded protein response signaling in hepatic stem cell activation in liver fibrosis

    No full text
    Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches

    Unfolded protein response signaling in hepatic stem cell activation in liver fibrosis

    No full text
    Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches
    corecore