2 research outputs found

    Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageing

    Full text link
    Additively manufactured high strength aluminium alloy AA7075 was prepared using selective laser melting. High strength aluminium alloys prepared by selective laser melting have not been widely studied to date. The evolution of microstructure and hardness, with the attendant corrosion, were investigated. Additively manufactured AA7075 was investigated both in the as-produced condition and as a function of artificial ageing. The microstructure of specimens prepared was studied using electron microscopy. Production of AA7075 by selective laser melting generated a unique microstructure, which was altered by solutionising and further altered by artificial ageing - resulting in microstructures distinctive to that of wrought AA7075-T6. The electrochemical response of additively manufactured AA7075 was dependent on processing history, and unique to wrought AA7075-T6, whereby dissolution rates were generally lower for additively manufactured AA7075. Furthermore, immersion exposure testing followed by microscopy, indicated different corrosion morphology for additively manufactured AA7075, whereby resultant pit size was notably smaller, in contrast to wrought AA7075-T6.Comment: 37 pages, includes 4 Tables and 11 Figure

    Chromate replacement:what does the future hold?

    No full text
    Abstract The ubiquitous use of chromium and its derivatives as corrosion preventative compounds accelerated rapidly after the second industrial revolution, with such compounds now integral to modern society. However, the detrimental impact of chromium compounds on the environment and human health has prompted the need to revisit the majority of current industrial corrosion protection measures. This review retraces the origins of chromium replacement motivations, introducing the various legislative actions aimed at diminishing the use of chromium compounds, and critically reviews alternative corrosion preventative technologies developed in the recent decades to now. The review, herein, is intended for a broad audience in order to provide a concise update to an increasingly timely issue
    corecore