296 research outputs found

    Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1

    Get PDF
    This is the published version. Copyright WileySynaptic plasticity is implemented by the interaction of glutamate receptors with PDZ domain proteins. Glutamate transporters provide the only known mechanism of clearance of glutamate from excitatory synapses, and GLT1 is the major glutamate transporter. We show here that GLT1 interacts with the PDZ domain protein PICK1, which plays a critical role in regulating the expression of glutamate receptors at excitatory synapses. A yeast two-hybrid screen of a neuronal library using the carboxyl tail of GLT1b yielded clones expressing PICK1. The GLT1b C-terminal peptide bound to PICK1 with high affinity (Ki = 6.5 ± 0.4 μm) in an in vitro fluorescence polarization assay. We also tested peptides based on other variants of GLT1 and other glutamate transporters. GLT1b co-immunoprecipitated with PICK1 from rat brain lysates and COS7 cell lysates derived from cells transfected with plasmids expressing PICK1 and GLT1b. In addition, expression of GLT1b in COS7 cells changed the distribution of PICK1, bringing it to the surface. GLT1b and PICK1 co-localized with each other and with synaptic markers in hippocampal neurons in culture. Phorbol ester, an activator of protein kinase C (PKC), a known PICK1 interactor, had no effect on glutamate transport in rat forebrain neurons in culture. However, we found that exposure of neurons to a myristolated decoy peptide with sequence identical to the C-terminal sequence of GLT1b designed to block the PICK1–GLT1b interaction rendered glutamate transport into neurons responsive to phorbol ester. These results suggest that the PICK1–GLT1b interaction regulates the modulation of GLT1 function by PKC.The authors are grateful to Sara Vasquez who provided excellent technical assistance in preparing the neuronal cultures. In addition, we are grateful for helpful discussions with Drs Gabriel Corfas, Michael Berne and Michael Robinson, to Dr Tom Schwarz for reading an early version of this manuscript, and to Dr Jeff Rothstein for providing an anti-cGLT1a antibody. We are also indebted to Dr Robinson for providing us with a detailed protocol for the biotinylation studies. This work was funded by grants from the Ron Shapiro Charitable Foundation (P.A.R.), the Muscular Dystrophy Association (P.A.R.), and National Institutes of Health research grant NS 40753 and a Mental Retardation Core Grant HD18655

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes

    Get PDF
    Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β2-adrenergic receptor (β2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β2AR. We show that the select ligands bind preferentially to different predicted conformers of β2AR, and identify a role of β2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. © 2012 Isin et al

    A high-affinity, bivalent PDZ domain inhibitor complexes PICK1 to alleviate neuropathic pain

    Get PDF
    Maladaptive plasticity involving increased expression of AMPA‐type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell‐permeable, high‐affinity (~2 nM) peptide inhibitor, Tat‐P4_4‐(C5)2_2, of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex. Bivalent Tat‐P4_4‐(C5)2_2 disrupts PICK1 interaction with membrane proteins on supported cell membrane sheets and reduce the interaction of AMPARs with PICK1 and AMPA‐receptor surface expression in vivo. Moreover, Tat‐P4_4‐(C5)2_2 administration reduces spinal cord transmission and alleviates mechanical hyperalgesia in the spared nerve injury model of neuropathic pain. Taken together, our data reveal Tat‐P4_4‐(C5)2_2 as a novel promising lead for neuropathic pain treatment and expand the therapeutic potential of bivalent inhibitors to non‐tandem protein–protein interaction domains

    Effect of Chronic Escitalopram versus Placebo on Personality Traits in Healthy First-Degree Relatives of Patients with Depression: A Randomized Trial

    Get PDF
    The serotonergic neurotransmitter system is closely linked to depression and personality traits. It is not known if selective serotonin reuptake inhibitors (SSRI) have an effect on neuroticism that is independent of their effect on depression. Healthy individuals with a genetic liability for depression represent a group of particular interest when investigating if intervention with SSRIs affects personality. The present trial is the first to test the hypothesis that escitalopram may reduce neuroticism in healthy first-degree relatives of patients with major depressive disorder (MD).The trial used a randomized, blinded, placebo-controlled parallel-group design. We examined the effect of four weeks escitalopram 10 mg daily versus matching placebo on personality in 80 people who had a biological parent or sibling with a history of MD. The outcome measure on personality traits was change in self-reported neuroticism scores on the Revised Neuroticism-Extroversion-Openness-Personality Inventory (NEO-PI-R) and the Eysenck Personality Inventory (EPQ) from entry until end of four weeks of intervention.When compared with placebo, escitalopram did not significantly affect self-reported NEO-PI-R and EPQ neuroticism and extroversion, EPQ psychoticism, NEO-PI-R openness, or NEO-PI-R conscientiousness (p all above 0.05). However, escitalopram increased NEO-PI-R agreeableness scores significantly compared with placebo (mean; SD) (2.38; 8.09) versus (-1.32; 7.94), p = 0.046), but not following correction for multiplicity. A trend was shown for increased conscientiousness (p = 0.07). There was no significant effect on subclinical depressive symptoms (p = 0.6).In healthy first-degree relatives of patients with MD, there is no effect of escitalopram on neuroticism, but it is possible that escitalopram may increase the personality traits of agreeableness and conscientiousness.Clinicaltrials.gov NCT00386841

    γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes

    Get PDF
    AIMS/HYPOTHESIS: γ-Aminobutyric acid (GABA) is a signalling molecule in the interstitial space in pancreatic islets. We examined the expression and function of the GABA signalling system components in human pancreatic islets from normoglycaemic and type 2 diabetic individuals. METHODS: Expression of GABA signalling system components was studied by microarray, quantitative PCR analysis, immunohistochemistry and patch-clamp experiments on cells in intact islets. Hormone release was measured from intact islets. RESULTS: The GABA signalling system was compromised in islets from type 2 diabetic individuals, where the expression of the genes encoding the α1, α2, β2 and β3 GABA(A) channel subunits was downregulated. GABA originating within the islets evoked tonic currents in the cells. The currents were enhanced by pentobarbital and inhibited by the GABA(A) receptor antagonist, SR95531. The effects of SR95531 on hormone release revealed that activation of GABA(A) channels (GABA(A) receptors) decreased both insulin and glucagon secretion. The GABA(B) receptor antagonist, CPG55845, increased insulin release in islets (16.7 mmol/l glucose) from normoglycaemic and type 2 diabetic individuals. CONCLUSIONS/INTERPRETATION: Interstitial GABA activates GABA(A) channels and GABA(B) receptors and effectively modulates hormone release in islets from type 2 diabetic and normoglycaemic individuals

    A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    Get PDF
    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand, dissociation and re-association of ligands were simulated revealing events leading to substrate (GABA) translocation and inhibitor (tiagabine) mechanism of action. We succeeded in turning the transporter from the outward facing occluded to the open-to-out conformation, and also to reorient the transporter to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate from the primary substrate-binding site (S1) towards the cytoplasm

    Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors

    Get PDF
    The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process
    corecore