224 research outputs found

    Optimal power control in Cognitive MIMO systems with limited feedback

    Full text link
    In this paper, the problem of optimal power allocation in Cognitive Radio (CR) Multiple Input Multiple Output (MIMO) systems is treated. The focus is on providing limited feedback solutions aiming at maximizing the secondary system rate subject to a constraint on the average interference caused to primary communication. The limited feedback solutions are obtained by reducing the information available at secondary transmitter (STx) for the link between STx and the secondary receiver (SRx) as well as by limiting the level of available information at STx that corresponds to the link between the STx and the primary receiver PRx. Monte Carlo simulation results are given that allow to quanitfy the performance achieved by the proposed algorithms

    TDMA is Optimal for All-unicast DoF Region of TIM if and only if Topology is Chordal Bipartite

    Get PDF
    The main result of this work is that an orthogonal access scheme such as TDMA achieves the all-unicast degrees of freedom (DoF) region of the topological interference management (TIM) problem if and only if the network topology graph is chordal bipartite, i.e., every cycle that can contain a chord, does contain a chord. The all-unicast DoF region includes the DoF region for any arbitrary choice of a unicast message set, so e.g., the results of Maleki and Jafar on the optimality of orthogonal access for the sum-DoF of one-dimensional convex networks are recovered as a special case. The result is also established for the corresponding topological representation of the index coding problem

    On the equivalence of blind equalizers based on MRE and subspace intersections

    Full text link

    Coordinated Shared Spectrum Precoding with Distributed CSIT

    Get PDF
    In this paper, the operation of a Licensed Shared Access (LSA) system is investigated, considering downlink communication. The system comprises of a Multiple-Input-Single-Output (MISO) incumbent transmitter (TX) - receiver (RX) pair, which offers a spectrum sharing opportunity to a MISO licensee TX-RX pair. Our main contribution is the design of a coordinated transmission scheme, inspired by the underlay Cognitive Radio (CR) approach, with the aim of maximizing the average rate of the licensee, subject to an average rate constraint for the incumbent. In contrast to most prior works on underlay CR, the coordination of the two TXs takes place under a realistic Channel State Information (CSI) scenario, where each TX has sole access to the instantaneous direct channel of its served terminal. Such a CSI knowledge setting brings about a formulation based on the theory of Team Decisions, whereby the TXs aim at optimizing a common objective given the same constraint set, on the basis of individual channel information. Consequently, a novel set of applicable precoding schemes is proposed. Relying on statistical coordination criteria, the two TXs cooperate in the lack of any instantaneous CSI exchange. We verify by simulations that our novel coordinated precoding scheme outperforms the standard underlay CR approach

    Efficient FPGA implementation of high-throughput mixed radix multipath delay commutator FFT processor for MIMO-OFDM

    Get PDF
    This article presents and evaluates pipelined architecture designs for an improved high-frequency Fast Fourier Transform (FFT) processor implemented on Field Programmable Gate Arrays (FPGA) for Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM). The architecture presented is a Mixed-Radix Multipath Delay Commutator. The presented parallel architecture utilizes fewer hardware resources compared to Radix-2 architecture, while maintaining simple control and butterfly structures inherent to Radix-2 implementations. The high-frequency design presented allows enhancing system throughput without requiring additional parallel data paths common in other current approaches, the presented design can process two and four independent data streams in parallel and is suitable for scaling to any power of two FFT size N. FPGA implementation of the architecture demonstrated significant resource efficiency and high-throughput in comparison to relevant current approaches within literature. The proposed architecture designs were realized with Xilinx System Generator (XSG) and evaluated on both Virtex-5 and Virtex-7 FPGA devices. Post place and route results demonstrated maximum frequency values over 400 MHz and 470 MHz for Virtex-5 and Virtex-7 FPGA devices respectively

    Generation of correlated Rayleigh fading channels for accurate simulationof promising wireless communication systems

    Get PDF
    In this paper, a generalized method is proposed for the accurate simulation of equal/ unequal power correlated Rayleigh fading channels to overcome the shortcomings of existing methods. Spatial and spectral correlations are also considered in this technique for different transmission conditions. It employs successive coloring for the inphase and quadrature components of successive signals using real correlation vector of successive signal envelopes rather than complex covariance matrix of the Gaussian signals which is utilized in conventional methods. Any number of fading signals with any desired correlations of successive envelope pairs in the interval [0, 1] can be generated with high accuracy. Moreover, factorization of the desired covariance matrix is avoided to overcome the shortcomings and high computational complexity of conventional methods. Extensive simulations of different representative scenarios demonstrate the effectiveness of the proposedtechnique. The simplicity and accuracy of this method will help the researchers to study and simulate the impact of fading correlation on the performance evaluation of various multi-antenna and multicarrier communication systems. Moreover, it enables the engineers for efficient design and deployment of new schemes for feasible wireless application

    Joint Sensing and Reception Design of SIMO Hybrid Cognitive Radio Systems

    Get PDF
    In this paper, the problem of joint design of Spectrum Sensing (SS) and receive beamforming (BF), with reference to a Cognitive Radio (CR) system, is considered. The aim of the proposed design is the maximization of the achievable average uplink rate of a Secondary User (SU), subject to an outage-based Quality-of-Service (QoS) constraint for primary communication. A hybrid CR system approach is studied, according to which, the system either operates as an interweave (i.e., opportunistic) or as an underlay (i.e., spectrum sharing) CR system, based on SS results. A realistic Channel State Information (CSI) framework is assumed, according to which, the direct channel links are known by the multiple antenna receivers (RXs), while, merely statistical (covariance) information is available for the interference links. A new, closed form approximation is derived for the outage probability of primary communication, and the problem of rate-optimal selection of SS parameters and receive beamformers is addressed for hybrid, interweave and underlay CR systems. It is proven that our proposed system design outperforms both underlay and interweave CR systems for a range of system scenarios

    Robust leakage-based distributed precoder for cooperative multicell systems

    Get PDF
    Coordinated multipoint (CoMP) from long term evolution (LTE)-advanced is a promising technique to enhance the system spectral efficiency. Among the CoMP techniques, joint transmission has high communication requirements, because of the data sharing phase through the backhaul network, and coordinated scheduling and beamforming reduces the backhaul requirements, since no data sharing is necessary. Most of the available CoMP techniques consider perfect channel knowledge at the transmitters. Nevertheless for practical systems this is unrealistic. Therefore in this study the authors address this limitation by proposing a robust precoder for a multicell-based systems, where each base station (BS) has only access to an imperfect local channel estimate. They consider both the case with and without data sharing. The proposed precoder is designed in a distributed manner at each BS by maximising the signal-to-leakage-and-noise ratio of all jointly processed users. By considering the channel estimation error in the design of the precoder, they are able to reduce considerably the impact of these errors in the system's performance. The results show that the proposed scheme has improved performance especially for the high signal-to-noise ratio regime, where the impact of the channel estimation error may be more pronounced

    Interference Alignment and Cancellation

    Get PDF
    The throughput of existing MIMO LANs is limited by the number of antennas on the AP. This paper shows how to overcome this limit. It presents interference alignment and cancellation (IAC), a new approach for decoding concurrent sender-receiver pairs in MIMO networks. IAC synthesizes two signal processing techniques, interference alignment and interference cancellation, showing that the combination applies to scenarios where neither interference alignment nor cancellation applies alone. We show analytically that IAC almost doubles the throughput of MIMO LANs. We also implement IAC in GNU-Radio, and experimentally demonstrate that for 2x2 MIMO LANs, IAC increases the average throughput by 1.5x on the downlink and 2x on the uplink.United States. Defense Advanced Research Projects Agency. Information Theory for Mobile Ad-Hoc Networks Progra
    corecore