86 research outputs found

    Ultrafine particles around a major airport – attempt to model total ultrafine particle number concentration around Frankfurt Airport

    Get PDF
    The German Environment Agency (UBA) funded the project “Influence of a major airport on temporal and spatial distributions of outdoor air concentrations of ultrafine dust <100 nm to describe the potential exposure in the vicinity - including other air pollutants (soot, nitrogen oxides and particulate matter (PM2.5 and PM10))”, UFOPLAN 3716 52 200 0. Total UFP number concentration for the year 2015 at and around Frankfurt Airport (FRA) was estimated using a combination of established small-scale (LASAT/LASPORT) and large-scale modelling (EURAD, MADE). Emissions were determined for aircraft traffic, road traffic, airport ground services and regional/mesoscale background using standard national and international inventories (HBEFA, ICAO, GRETA) and specific data obtained from the airport. Model outputs were series of successive 3-dimensional hourly mean concentrations apportioned to aircraft, airport, motor traffic and background. The model results suggest that aircraft main engines are the dominant source of UFP at the airport. Aircraft up to 3’000 ft (about 230’000 LTOs) plus airport-bound sources yield an annual nvPM emission of 1e+24 particles, about 90% of which are due to aircraft main engines. According to the model results, long-time averages of UFP number concentration are dominated by background contributions at locations further away from the airport, while the airport contribution to hourly mean concentrations can be significant even in some distance from the airport. An important aim of the project was to identify shortcomings of current state-of-the-art emission and concentration modelling of UFP in the context of airports. Here, inconsistent UFP diameter ranges in the databases, models and measurements are of relevance, likewise differences in the considered UFP characterisation and measuring method, in particular volatile versus non-volatile fractions. On a more advanced level, current limitations in knowledge and capabilities of local models to address UFP transformation processes play a role

    BAERLIN2014 - stationary measurements and source apportionment at an urban background station in Berlin, Germany

    Get PDF
    The Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons (BAERLIN2014) campaign was conducted during the 3 summer months (June–August) of 2014. During this measurement campaign, both stationary and mobile measurements were undertaken to address complementary aims. This paper provides an overview of the stationary measurements and results that were focused on characterization of gaseous and particulate pollution, including source attribution, in the Berlin–Potsdam area, and quantification of the role of natural sources in determining levels of ozone and related gaseous pollutants. Results show that biogenic contributions to ozone and particulate matter are substantial. One indicator for ozone formation, the OH reactivity, showed a 31% (0.82±0.44s−1) and 75% (3.7±0.90s−1) contribution from biogenic non-methane volatile organic compounds (NMVOCs) for urban background (2.6±0.68s−1) and urban park (4.9±1.0s−1) location, respectively, emphasizing the importance of such locations as sources of biogenic NMVOCs in urban areas. A comparison to NMVOC measurements made in Berlin approximately 20 years earlier generally show lower levels today for anthropogenic NMVOCs. A substantial contribution of secondary organic and inorganic aerosol to PM10 concentrations was quantified. In addition to secondary aerosols, source apportionment analysis of the organic carbon fraction identified the contribution of biogenic (plant-based) particulate matter, as well as primary contributions from vehicles, with a larger contribution from diesel compared to gasoline vehicles, as well as a relatively small contribution from wood burning, linked to measured levoglucosan

    MetNH3: Metrology for Ammonia in Ambient Air

    Get PDF
    Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. Ammonia is increasingly being globally acknowledged as a key precursor to atmospheric particulate matter. The European Directive 2001/81/EC on “National Emission Ceilings for Certain Atmospheric Pollutants (NEC)” regulates ammonia emissions in the member states. However, due to the chemical characteristics of ambient ammonia traceable on-line measurements still have significant challenges in analytical technology, uncertainty, quality assurance and quality control (QC/QA). Currently the UK National Ammonia Monitoring Network uses an accredited off-line low temporal resolution and on-line denuder–IC methods at the UK Supersites. There is a need for traceable ammonia measurements which will be vitally important for identifying changes in environment policies, climate and agricultural practice. This in turn should lead to improvements emission inventory uncertainties and for providing independent verification of atmospheric model predictions. MetNH3 (EMRP Joint Research Project) has worked with SMEs in testing improved reference gas mixtures by static and dynamic gravimetric generation methods, develop and refine existing laser based optical spectrometric standards and establishing the transfer from high-accuracy standards to field applicable methods. The first results from the metrological characterisation of a commercially available cavity ring-down spectrometer (CRDS) are presented and the results from a new design “Controlled Atmosphere Test Facility (CATFAC)”, which is currently characterising the performance of diffusive samplers. The range and characteristics of instruments are discussed. The plans for a major ammonia field intercomparison in 2016 will be outlined

    New particle formation event detection with convolutional neural networks

    Get PDF
    New aerosol particle formation (NPF) events play a significant role in altering aerosol concentrations and dispersion within the atmosphere, making them vital for both climate and air quality research. The primary objective of investigating NPF events is to precisely determine their occurrence dates. In this study, we introduced the ConvNeXt model for the first time to identify NPF events, and compared its performance with two other deep learning models, EfficientNet and Swin Transformer. Our main aim was to automate an objective identification and classification of NPF events accurately. All three models employed transfer learning to effectively capture critical features associated with NPF. Our results demonstrated that the ConvNeXt model significantly outperformed the other models, achieving an impressive accuracy rate of 95.3% on event days, surpassing EfficientNet (92.8%) and Swin Transformer (94.9%). Furthermore, we performed tests using different ConvNeXt variants (ConvNeXt-T/S/B/L/XL) and different pre-training weights, revealing that different configurations of ConvNeXt models exhibited improved NPF event recognition capabilities. Finally, we conducted generalizability experiments using the ConvNeXt-XL model, achieving the highest accuracy of 96.4% on event days. This study not only underscores the recognition prowess of ConvNeXt models but also highlights their practical utility in accurately detecting NPF events in real-world scenarios. This contribution aids in advancing our comprehension of aerosol dynamics in atmospheric environments, providing valuable insights for climate and air quality research.This study is supported by the RI-URBANS project (Research Infrastructures Services Reinforcing Air Quality Monitoring Capacities in European Urban & Industrial Areas, European Union's Horizon 2020 research and innovation program, Green Deal, European Commission, contract 101036245). This study is also supported by National Natural Science Foundation of China (42101470, 72242106), and Xinjiang Uygur Autonomous Region (2023D01A57), a grant from State Key Laboratory of Resources and Environmental Information System, in part by the Chunhui Project Foundation of the Education Department of China (HZKY20220053), and by the Hungarian Research, Development and Innovation Office (K132254). M. Savadkoohi would like to thank the Spanish Ministry of Science and Innovation for her FPI grant (PRE-2020-095498) and the support from “Agencia Estatal de Investigaci'on” from the Spanish Ministry of Science and Innovation under the project CAIAC (PID2019-108990RB-I00).Peer reviewe

    Metrology for Ammonia in Ambient Air. Final publishable JRP report

    Get PDF
    This project developed reference standards and measurement techniques for traceable measurements of NH3 in air. These will enable validated high quality ammonia measurement data which will help monitor and compare NH3 levels and ensure compliance with environmental protection policies and legislation

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importñncia de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    stairs and fire

    Get PDF
    • 

    corecore