9 research outputs found

    Using textured PDMS to prevent settlement and enhance release of marine fouling organisms

    No full text
    The antifouling efficacy of a series of 18 textured (0.2–1000 μm) and non-textured (0 μm) polydimethylsiloxane surfaces with the profiles of round- and square-wave linear grating was tested by recording the settlement of fouling organisms in the laboratory and in the field by monitoring the recruitment of a multi-species fouling community. In laboratory assays, the diatoms Nitzschia closterium and Amphora sp. were deterred by all surface topographies regardless of texture type. Settlement of propagules of Ulva sp. was lower on texture sizes less than the propagule size, and settlement of larvae of Saccostrea glomerata and Bugula neritina was lower on texture sizes closest to, but less than, the sizes of larvae. After a six month field trial, all textured surfaces lost their deterrent effect; however, the foul-release capabilities of textures were still present. High initial attachment was correlated with most fouling remaining after removal trials, indicating that fouling organisms recruited in higher numbers to surfaces upon which they attached most strongly

    Growth and survival of the pearl oyster Pteria hirundo (L.,1758) in an intermediate stage of culture in Santa Catarina, Brazil

    No full text
    There are no records in Brazil for the culture of Pteridae family oysters, genus Pteria and Pinctada. The intermediate culture can be considered one of the critical stages during the oyster farming. The changes in life conditions from a semi-closed environment provided by the collector to the structures utilized for the growth represents a considerable stress factor to which the animals are subjected. The goal of the present study was to evaluate the growth and survival of the pearl oyster Pteria hirundo (Linnaeus, 1758) kept in intermediate lanterns. Seeds of P. hirundo, obtained through larviculture carried out at the Marine Molluscs Laboratory (UFSC), southern Brazil were detached from the collectors, transferred and kept in an intermediate culture system (oyster lantern). During 6 months, growth (dorso-ventral height - DVH in mm) and survival (%) were evaluated. Two size classes were tested: medium (M), between 3.4 and 4.4 mm, and large (L), bigger than 4.5 mm. The density of occupation in each floor of the lantern was 50%. At the end of the experiment, the survivals observed were 90 and 94% for the sizes M and L, respectively. Medium juveniles of Pteria hirundo had an average (Std) increase of 16.1 (±4.38) mm in the dorso-ventral height, and large juveniles an average increase of 11.4 (±3.77) mm after six months of experiment. The results observed during the intermediate stage of cultivation indicate that Pteria hirundo presents survival and growth similar to other species of pearl oysters traditionally used in the pearl industry in several countries

    The impact and control of biofouling in marine aquaculture: a review

    No full text
    Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5–10% of production costs (equivalent to US$ 1.5 to 3 billion yr−1), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms

    Swept away: ocean currents and seascape features influence genetic structure across the 18,000 Km Indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera

    No full text
    corecore