11 research outputs found
Combatting pain after orthopedic/trauma surgery- perioperative oral extended-release tapentadol vs. extended-release oxycodone/naloxone
Abstract Background High post-operative pain scores after “minor” orthopedic/trauma surgery are in part attributed to inadequate prescription of opioid analgesics. Novel concepts aiming to achieve sufficient analgesia while minimizing opioid-related side effects by avoiding fluctuating plasma levels are based on perioperative oral administration of extended-release opioids beginning with the first dose pre-operatively. This is the first study to evaluate analgesic efficacy and side effect rates of extended-release tapentadol compared to oxycodone/naloxone following orthopedic/trauma surgery. Methods This randomized, observer-blinded, active-controlled prospective clinical trial had 2 co-primary endpoints: (1) Analgesic efficacy: Mean pain level on a numeric rating scale (NRS) from 0 to 10 during exercise over 5 days. (2) Safety: Side effect sum score of the following events: Nausea, vomiting, constipation, sedation, vertigo, somnolence. The study was powered to detect superiority of tapentadol for at least one endpoint pending statistical proof of non-inferiority for both endpoints in a first step. Results Two hundred sixty-six trauma patients were randomized to receive either tapentadol (n = 133) or oxycodone/naloxone (n = 133). Analgesic efficacy: Mean (±SD) daily pain levels in the first five post-operative days were 2.8 ± 1.3 in both groups. Mean maximum pain intensity during exercise in the first 24 h after surgery was 3.8 ± 1.9 (tapentadol) and 3.8 ± 2.1 (oxycodone/naloxone). Statistically tapentadol was non-inferior but not superior to oxycodone/naloxone. Safety: Vomiting on day 1 occurred in 11%, constipation in 35% of the tapentadol patients and in 16% and 30% of the oxycodone/naloxone patients (p = 0.60 and 0.33), respectively. The incidence of sedation/ vertigo was 0.3, respectively). The sum score of side effect events was 51% in the tapentadol vs. 49% in the oxycodone/naloxone group; risk difference 3% [95% CI, −8 to 14%]; p = 0.6). Non-inferiority of tapentadol could not be concluded as the pre-defined non-inferiority margin was exceeded. Conclusions With both concepts, mean maximum pain intensity during exercise within the first 24 h after orthopedic/trauma surgery was reduced to a score of <4. This analgesic efficacy came at the cost of mainly gastro-intestinal side effects. Thus, we now use a prophylaxis against nausea and vomiting and pre-emptive laxatives as part of these concepts. Trial registration https://eudract.ema.europa.eu (EudraCT- Nr. 2011–003238-15 ); October 24th, 2012
An improved model for the binding of lidocaine and structurally related local anaesthetics to fast-inactivated voltage-operated sodium channels, showing evidence of cooperativity
1. The interaction of lidocaine-like local anaesthetics with voltage-operated sodium channels is traditionally assumed to be characterized by tighter binding of the drugs to depolarized channels. As inactivated and drug-bound channels are both unavailable on depolarization, an indirect approach is required to yield estimates for the dissociation constants from channels in inactivated states. The established model, originally described by Bean et al., describes the difference in affinity between resting and inactivated states in terms of the concentration dependence of the voltage shift in the availability curve. We have tested the hypothesis that this model, which assumes a simple Langmuir relationship, could be improved by introducing a Hill-type exponent, which would take into account potential sources of cooperativity. 2. Steady-state block by lidocaine was studied in heterologously (HEK 293) expressed human skeletal muscle sodium channels and compared with experimental data previously obtained for 2,6-dimethylphenol, 3,5-dimethyl-4-chlorophenol, and 4-chlorophenol. Cells were clamped to membrane potentials from −150 to −5 mV, and a subsequent test pulse was used to assess the number of channels available to open. 3. All compounds shifted the voltage dependence of channel availability in the direction of negative prepulse potentials. Prediction of the concentration dependence of the voltage shift in the availability curve was improved by the modified model, as shown by a marked reduction in the residual sum of squares. 4. For all compounds, the Hill-type exponent was significantly greater than one. These results could be interpreted in the light of the contemporary hypothesis that lidocaine functions as an allosteric gating effector to enhance sodium channel inactivation by strengthening the latch mechanism of inactivation, which is considered to be a particle-binding process allosterically coupled to activation. Alternatively, they could be interpreted by postulating additional binding sites for lidocaine on fast-inactivated sodium channels
4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors
Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol) at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM) and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively). Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.</p
Structural features of phenol derivatives determining potency for activation of chloride currents via α(1) homomeric and α(1)β heteromeric glycine receptors
1. Phenol derivatives constitute a family of neuroactive compounds. The aim of our study was to identify structural features that determine their modulatory effects at glycine receptors. 2. We investigated the effects of four methylated phenol derivatives and two halogenated analogues on chloride inward currents via rat α(1) and α(1)β glycine receptors, heterologously expressed in HEK 293. 3. All compounds potentiated the effect of a submaximal glycine concentration in both α(1) homomeric and α(1)β glycine receptors. While the degree of maximum potentiation of the glycine 10 μM effect in α(1)β receptors was not different between the compounds, the halogenated compounds achieved half-maximum potentiating effects in the low μM range – at more than 20-fold lower concentrations compared with their nonhalogenated analogues (P<0.0001). The coactivating effect was over-ridden by inhibitory effects at concentrations >300 μM in the halogenated compounds. Neither the number nor the position of the methyl groups significantly affected the EC(50) for coactivation. 4. Only the bimethylated compounds 2,6 and 3,5 dimethylphenol (at concentrations >1000 μM) directly activated both α(1) and α(1)β receptors up to 30% of the maximum response evoked by 1000 μM glycine. 5. These results show that halogenation in the para position is a crucial structural feature for the potency of a phenolic compound to positively modulate glycine receptor function, while direct activation is only seen with high concentrations of compounds that carry at least two methyl groups. The presence of the β subunit is not required for both effects
Block of voltage-operated sodium channels by 2,6-dimethylphenol, a structural analogue of lidocaine's aromatic tail
1. The structural features that determine the state-dependent interaction of local anaesthetics with voltage-operated sodium channels are still a matter of debate. We have studied the blockade of sodium channels by 2,6-dimethylphenol, a phenol derivative which resembles the aromatic tail of lidocaine, etidocaine, and bupivacaine. 2. The effects of 2,6-dimethylphenol were studied on heterologously (HEK 293) expressed rat neuronal (rat brain IIA) and human skeletal muscle (hSkM1) sodium channels using whole-cell voltage-clamp experiments. 3. 2,6-Dimethylphenol was effective in blocking whole-cell sodium inward currents. Its potency was comparable to the potency of lidocaine previously obtained with similar protocols by others. The IC(50) at −70 mV holding potential was 150 and 187 μM for the skeletal muscle and the neuronal isoform, respectively. In both isoforms, the blocking potency increased with the fraction of inactivated channels at depolarized holding potentials. However, the block achieved at −70 mV with respect to −150 mV holding potential was significantly higher only in the skeletal muscle isoform. The estimated dissociation constant K(d) from the inactivated state was 25 μM and 28 μM in the skeletal muscle and the neuronal isoform, respectively. The kinetics of drug equilibration between resting and inactivated channel states were about 10 fold faster compared with lidocaine. 4. Our results show that the blockade induced by 2,6-dimethylphenol retains voltage-dependency, a typical feature of lidocaine-like local anaesthetics. This is consistent with the hypothesis that the ‘aromatic tail' determines the state-dependent interaction of local anaesthetics with the sodium channel