209 research outputs found
High genetic diversity among Mycobacterium tuberculosis complex strains from Sierra Leone
<p>Abstract</p> <p>Background</p> <p>Among tuberculosis (TB) high incidence regions, Sub-Saharan Africa is particularly affected with approx. 1.6 million new cases every year. Besides this dramatic situation, data on the diversity of <it>Mycobacterium tuberculosis </it>complex (MTBC) strains causing this epidemic in this area are only sparsely available. Here we analyzed the population structure of strains from Sierra Leone with a special focus on the prevalence of <it>M. africanum</it>.</p> <p>Results</p> <p>A total of 97 strains isolated from smear positive cases registered for re-treatment in the Western Area and Kenema districts in years 2003/2004 were investigated by susceptibility testing (first line drugs) and molecular typing (IS<it>6110 </it>fingerprinting, spoligotyping, and MIRU-VNTR typing).</p> <p>Among the strains analyzed, 32 were resistant to isoniazid, and 11 were multidrug resistant (at least resistant to isoniazid and rifampin). The population diversity was high with two previously described <it>M. africanum </it>lineages (West African-1, n = 6; West African-2, n = 17) and seven <it>M. tuberculosis </it>lineages (Haarlem, n = 14; LAM, n = 15; EAI, n = 4; Beijing, n = 4; S-type, n = 4, X-type, n = 1; Cameroon, n = 4). Furthermore, two new <it>M. tuberculosis </it>genotypes Sierra Leone-1 (n = 7) and -2 (n = 10) were found. Strain classification according to a 7 bp deletion in pks1/15 revealed that the majority of <it>M. tuberculosis </it>strains belonged to the Euro American lineage (66 out of 74).</p> <p>Conclusion</p> <p>Resistance rates in Sierra Leone have reached an alarming level. The population structure of MTBC strains shows an intriguing diversity raising the question of possible consequences for TB epidemic and for the introduction of new diagnostic tests or treatment strategies in West Africa.</p
Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers
Peer reviewedPublisher PD
Developmental Outcomes of Very Preterm Infants with Tracheostomies
Objectives To evaluate the neurodevelopmental outcomes of very preterm (<30 weeks) infants who underwent tracheostomy. Study design Retrospective cohort study from 16 centers of the NICHD Neonatal Research Network over 10 years (2001-2011). Infants who survived to at least 36 weeks (N=8,683), including 304 infants with tracheostomies, were studied. Primary outcome was death or neurodevelopmental impairment (NDI, a composite of one or more of: developmental delay, neurologic impairment, profound hearing loss, severe visual impairment) at a corrected age of 18-22 months. Outcomes were compared using multiple logistic regression. We assessed impact of timing, by comparing outcomes of infants who underwent tracheostomy before and after 120 days of life. Results Tracheostomies were associated with all neonatal morbidities examined, and with most adverse neurodevelopmental outcomes. Death or NDI occurred in 83% of infants with tracheostomies and 40% of those without [odds ratio (OR) adjusted for center 7.0 (95%CI, 5.2-9.5)]. After adjustment for potential confounders, odds of death or NDI remained higher [OR 3.3 (95%CI, 2.4-4.6)], but odds of death alone were lower [OR 0.4 (95%CI, 0.3-0.7)], among infants with tracheostomies. Death or NDI was lower in infants who received their tracheostomies before, rather than after, 120 days of life [adjusted OR 0.5 (95%CI, 0.3-0.9)]. Conclusions Tracheostomy in preterm infants is associated with adverse developmental outcomes, and cannot mitigate the significant risk associated with many complications of prematurity. These data may inform counseling about tracheostomy in this vulnerable population
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS
Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB–parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein–DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein–DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition
Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers
Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates.
Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS.
Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS.
Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
ALMS1-Deficient Fibroblasts Over-Express Extra-Cellular Matrix Components, Display Cell Cycle Delay and Are Resistant to Apoptosis
Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions
Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT
Background: Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5%-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of families with melanoma and whether performance improvements can be achieved. Methods: In total, 2116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CIs) along with net reclassification indices (NRIs) as performance metrics. Results: MELPREDICT performed well (AUC 0.752, 95% CI 0.730-0.775), and GenoMELPREDICT performance was similar (AUC 0.748, 95% CI 0.726-0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (P < .0001) in GenoMELPREDICT (AUC 0.772, 95% CI 0.750-0.793, NRI 0.40). Including phenotypic risk factors did not improve performance. Conclusion: The MELPREDICT model functioned well in a global data set of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in directing these patients to receive genetic testing or cancer risk counseling
- …